
Report on the Security of STARK-friendly
Hash Functions (Version 2.0)

Anne Canteaut1 (ed.), Tim Beyne2, Itai Dinur3, Maria Eichlseder4,
Gregor Leander5, Gaëtan Leurent1, Maŕıa Naya Plasencia1, Léo Perrin1,

Yu Sasaki6, Yosuke Todo6,5, Friedrich Wiemer5

1Inria, France
2Imec-COSIC, KU Leuven, Belgium

3Department of Computer Science, Ben-Gurion University, Israel
4Graz University of Technology, Austria

5Ruhr-Universität Bochum, Germany cryptosolutions, Germany
6NTT Secure Platform Laboratories, Japan



Version 2: 26/02/2020



Contents

1 Introduction 4

2 The SFH Contenders 5
2.1 Hash functions derived from the sponge construction . . . . . . . . . . . . 5
2.2 Candidates for the inner permutations . . . . . . . . . . . . . . . . . . . . 6
2.3 Round constants and MDS matrices . . . . . . . . . . . . . . . . . . . . . 6
2.4 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Security Evaluation of Hash Functions: Methodology 7
3.1 STARK-friendly hash challenges . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Attacks on weakened variants . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Distinguishers for the inner permutation . . . . . . . . . . . . . . . . . . . 8

4 GMiMC 9
4.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Integral distinguishers on the full GMiMC . . . . . . . . . . . . . . . . . 9
4.3 Impossible differential attacks . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4 A Differential Distinguisher . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.5 Algebraically controlled differential attacks . . . . . . . . . . . . . . . . . 23
4.6 Reduced-round collision attacks . . . . . . . . . . . . . . . . . . . . . . . . 26
4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 HadesMiMC (Starkad and Poseidon) 28
5.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2 Integral distinguishers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3 Finding preimages by linearization of the partial rounds . . . . . . . . . . 34
5.4 Remarks on algebraic distinguisher related to the CICO problem . . . . . 37
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 Marvellous (Vision and Rescue) 39
6.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2 Degree of the permutation . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.3 Algebraic distinguisher on Rescue related to the CICO problem . . . . . 41
6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7 Conclusions 42

A Weak Cauchy matrices 47



4 Report on the security of STARK-friendly hash functions

1 Introduction

The emergence of cryptographic protocols with advanced functionalities, such as fully-
homomorphic encryption, multi-party computation or new types of proof systems, has
led to a strong demand for new symmetric primitives, offering good performance in the
context of these specific applications. Indeed, the usual criteria which rule the design of
symmetric primitives are usually not appropriate when we focus on these applications.
For instance, the cost of the homomorphic evaluation of a symmetric primitive is mainly
determined by its multiplicative size and depth (see e.g. [ARS+15]). Similarly, the ZK-
STARK protocol [BBHR18], which is expected to be deployed on top of the Ethereum
blockchain within the next year, uses as a building-block a collision-resistant hash function,
and the performance of the proof system highly depends on the number of arithmetic
operations required for describing the hash function (see [AAB+19] for details). In other
words, STARK-friendly hash functions (SFH) are hash functions which are specified as a
sequence of low-degree polynomials or low-degree rational maps over a finite field.

Therefore, several new ciphers or hash functions have been proposed in the last
five years for these advanced protocols. They include several FHE-friendly symmetric
encryption schemes like LowMC [ARS+15], FLIP [MJSC16], Kreyvium [CCF+18]
or Rasta [DEG+18], some MPC-friendly block ciphers like MiMC [AGR+16] and its
variants [AGP+19a, GKK+19], and some primitives dedicated to ZK-STARK proof systems
like the functions from the Marvellous family, including Jarvis, Friday [AD18], Vision
and Rescue [AAB+19].

However, all these primitives are very innovative constructions and the implementation
constraints which rule their designs may have introduced some unexpected weaknesses.
This was the case of LowMC which has been broken a few weeks after its publica-
tions [DLMW15, DEM16, RST18]. More recently, a practical attack against Jarvis has
been mounted [ACG+19], showing that these types of designs are probably not mature
enough for practical applications and require a more in-depth security evaluation.

Actually, it is not surprising that the very first attempts to design a primitive with some
specific properties are broken. We had a similar experience during the Nessie competition
in 2000-20031 for instance, where all submitted stream ciphers were broken. This however
served as a fruitful lesson before the eSTREAM project2, which recommended in 2008
several stream ciphers which are still considered secure. Clearly, new implementation
constraints and new design principles usually open the door to new vulnerabilities and
new types of attacks. Several design attempts combined with an important cryptanalytic
effort are then mandatory to reach a secure primitive. This is why, since the end of the
90s and the AES competition, symmetric primitives are now standardized after a public
international competition which includes a cryptanalytic effort from the whole community
during four or five years (e.g. AES in 1997-2000, CRYPTREC in 2000-2003, eSTREAM
in 2004-2008, SHA-3 in 2008-2012 or CAESAR in 2014-2019). A similar effort of several
years is therefore needed for specifying secure MPC-friendly or STARK-friendly primitives.

The aim of this report is to present some preliminary analysis on the security of
three families of STARK-friendly hash functions, for some sets of parameters specified by
StarkWare. This analysis relies on the ideas, directions and results developed during a
3-day meeting held in Paris on November 2019. This effort enables us to exhibit some
severe weaknesses in some of the proposed primitives. However, the fact that no attack
has been obtained against some other algorithms does not imply that these algorithms are
secure, but only that they cannot be easily broken with the state-of-the-art cryptanalytic
techniques. Obviously, a much longer and intensive work is needed to assess their security
level: concrete primitives are usually recommended after 4 years, not a few days or weeks,

1https://en.wikipedia.org/wiki/NESSIE
2https://www.ecrypt.eu.org/stream/

https://en.wikipedia.org/wiki/NESSIE
https://www.ecrypt.eu.org/stream/


A. Canteaut (ed.) 5

of analysis.

Organization of this report. The next section presents the STARK-friendly hash func-
tions which are analyzed in the report and details the sets of parameters which have been
chosen, based on the performance analysis provided by StarkWare. Section 3 presents the
criteria used for evaluating the security of these hash functions. It especially discusses the
cryptographic relevance of the notion of distinguishers for the inner permutation of the
sponge construction. The following three sections then present the results of our analysis
on the three families of functions proposed by StarkWare: Section 4 focuses on GMiMC,
Section 5 on HadesMiMC and its two variants, Poseidon and Starkad, and Section 6
on two members of the Marvellous family, namely Vision and Rescue. The report
ends with a comparison of the security levels offered by these hash functions.

2 The SFH Contenders

2.1 Hash functions derived from the sponge construction

Three families of hash functions have been proposed by StarkWare as candidates for SFH
recommendations and have been included in the STARK-friendly hash challenges3. These
three families all follow the sponge construction [BDPV07, BDPV08] depicted on Figure 1,
and they only differ in the choice of the underlying inner permutation.

π

M0, . . . ,M7

π

M8, . . . ,M15
output

Figure 1: Sponge construction with inner permutation 𝜋, internal state with 𝑡 = 12 words
and capacity 𝑐 = 4.

In the following, we extensively use the following notation: the sponge operates on a
state composed of 𝑡 elements in a finite field F𝑞. The main parameter which determines
the security level of the sponge construction with respect to generic attacks (i.e., attacks
which do not exploit any detail of the inner permutation) is its capacity 𝑐, as well as the
size of the underlying alphabet F𝑞. Namely, a random sponge whose capacity consists of
𝑐 elements in F𝑞 provides a generic security level of 𝑐

2 log2 𝑞 queries both for collision and
(second)-preimage resistance [BDPV07].

The different members in each of these families are determined by the triple (𝑐, 𝑡, 𝑞)
representing respectively the number of words in the capacity, the number of words in the
state and the field size. In the following, when referring to practical examples, we will
focus on the values (𝑐, 𝑡, 𝑞) considered in the StarkWare challenges given in Table 1. To

3https://starkware.co/hash-challenge/

https://starkware.co/hash-challenge/


6 Report on the security of STARK-friendly hash functions

each triple (𝑐, 𝑡, 𝑞) correspond two variants: over a prime field and over a binary field, and
the exact values of 𝑞 are detailed in Table 1.

Table 1: Parameters proposed for the permutation and sponge construction.
Security level log2 𝑞 𝑞 (prime) 𝑞 (binary) 𝑐 𝑡 Variant

128 bits

64 261 + 20× 232 + 1 263 4 12 128-d

128 2125 + 266× 264 + 1 2125 2 4 128-a
2 12 128-c

256 2253 + 2199 + 1 2255 1 3 128-b
1 11 128-e

256 bits 128 2125 + 266× 264 + 1 2125 4 8 256-a
4 14 256-b

It is worth noticing that the STARK-friendly hash challenges also include some members
of these three families aiming at lower security levels, namely 45 bits and 80 bits, but these
functions will not be considered in this report because they do not guarantee a sufficient
security level.

2.2 Candidates for the inner permutations

The inner permutations for each of these families of sponges are the following ones:

∙ GMiMC designed by Albrecht et al., where only the variant GMiMCerf over a prime
field is considered, as defined in [AGP+19a, AGP+19b];

∙ HadesMiMC proposed by Grassi et al. [GKK+19, GLR+19], for which two versions
are distinguished depending on the characteristic of the underlying field: Starkad
over a field of characteristic 2, and Poseidon over a prime field;

∙ Marvellous designed by Aly et al. [AAB+19], which consists of two different per-
mutations: Vision over a field of characteristic 2, and Rescue over a prime field.

All these permutations are recent evolutions of a block cipher named MiMC designed
by Albrecht et al. in 2016 [AGR+16], and offer much more flexibility than the original
construction.

2.3 Round constants and MDS matrices

Most of these constructions actually correspond to STARK-friendly block ciphers, which
implies that they are defined as families of permutations parametrized by a secret key.
More precisely, these three designs consist of several iterations of the same round function,
and a round-key derived from the secret key by a key-scheduling algorithm is added to the
internal state between any two consecutive rounds. In the previously described setting,
the inner permutation of the sponge function is a single instance of the block cipher, i.e.,
the permutation corresponding to a specific and randomly chosen secret key. However,
the key-scheduling does not have any cryptographic relevance in the case of a single
permutation and it may induce some performance overhead. Then, the round-keys are
replaced by fixed independent round-constants which are computed by the same method
for all three designs: the 𝑖-th round-constant is derived from the image under SHA-256 of
the string formed by the name of the primitive and by the index 𝑖, e.g. sha256(′Hades𝑖′).
This choice guarantees that that the rounds are not too similar (which avoids classical



A. Canteaut (ed.) 7

attacks like slide attacks), and also that there is no strong regularity within the set of all
round-constants (like sparse round-constants).

Also, both HadesMiMC and Marvellous are Substitution-Permutation Networks
with a linear diffusion layer defined by an MDS matrix. In both cases, this matrix is chosen
as a Cauchy matrix, i.e, its entry at Row 𝑖 and Column 𝑗 is defined by

1
𝑥𝑖 − 𝑦𝑗

where (𝑥1, . . . , 𝑥𝑡) and (𝑦1, . . . , 𝑦𝑡) are randomly chosen constants generated in a similar
way as the round-constants. For the StarkWare challenge, such MDS matrices are then
generated until one with no eigenvalue in the field is found.

2.4 Performance

Performance in terms of trace size, proving time, and verification cost, is an essential
criterion for choosing a STARK-friendly hash function. The implementation results
presented by StarkWare show that, for each of the three previously described families
of hash functions, the variant 128-d (for the target 128-bit security) is by far the most
efficient. For this reason, this report mainly focuses on this member in the three families,
i.e., on sponges whose internal state consists of 𝑡 = 12 words in a finite field F𝑞 of size close
to 264 and with capacity 𝑐 = 4. More precisely, the finite field F𝑞 corresponds to F263 in
the case of a binary field and to F𝑝 with 𝑝 = 261 + 20× 232 + 1 in the case of a prime field.

It is also worth noticing that, in terms of performance and suitability, prime fields are
more STARK-friendly than binary fields for a given size.

3 Security Evaluation of Hash Functions: Methodology

It is expected that none of the three hash functions we evaluate is extremely weak and
that no practical attack could be found after a few weeks only. In this context, the relevant
information for estimating the security level of a symmetric primitive is its security margin
with respect to several types of attacks and weaknesses.

3.1 STARK-friendly hash challenges

As previously mentioned, several challenges have been launched by StarkWare in order to
evaluate and compare the security of these hash functions. The objective of the challenge is
to exhibit a collision for these hash functions, for the parameters listed in Table 1 aiming at
128-bit and 256-bit security. Some challenges with a weaker security level, namely 45 bits
and 80 bits, are also proposed. However, it is rather difficult to estimate the security margin
offered by the hash functions aiming at 128-bit security from these easier challenges. Indeed,
the easier challenges only reduce the parameters in the sponge construction, then making
a generic brute-force attack feasible. But, since the involved hash functions are based on
full versions of the inner permutations and not on weakened variants (typically with fewer
rounds), it is almost impossible to exploit potential weaknesses of the permutation in a
concrete attack in this setting. The only property of the inner permutation used so far
in the broken challenges for 45-bit security is the fact that the implementation cost of
some of these permutations (especially GMiMC) can be reduced in order to speed up the
brute-force attack [Udo19].



8 Report on the security of STARK-friendly hash functions

3.2 Attacks on weakened variants

The aim of this report is to identify whether weakened variants of the hash functions can
be attacked with a lower complexity than the complexity of the generic attacks. Typical
weakened variants are obtained by reducing the number of rounds of the inner iterative
permutation. Also, some building-blocks (e.g. the MDS matrix) can be slightly modified to
measure whether some unexpected weaknesses may appear in the underlying construction
in some specific cases.

3.3 Distinguishers for the inner permutation

Obviously, the primary cryptanalytic goal is to exhibit collision or preimage attacks on
some weakened variants of the three hash functions. Finding such attacks requires, as a
preliminary work, exhibiting some specific properties of the inner permutation of the hash
function which may be exploited in an attack. Therefore, this report also describes some
specific properties, like the existence of differentials or some properties of algebraic nature,
which hold for the considered permutations and not for a randomly chosen permutation of
F𝑡

𝑞. In some cases, we have not found any concrete attack so far based on the exhibited
property. However, the existence of a property which distinguishes a given cryptographic
function from an ideal function of the same size is commonly considered as a weakness.

This issue has been discussed in several contexts, e.g., for evaluating the security of hash
functions [AMPH14, Page 19] or through the notion of known-key distinguishers against
block-ciphers [KR07]. For instance, in the case of hash functions, it is explicitly stated
in [FSK10] that an attack on a hash function is a non-generic method of distinguishing
the hash function from an ideal hash function. Obviously, it is difficult to provide a formal
and rigorous definition of a distinguisher on a given function. Also, any cryptographic
function admits a trivial distinguisher since it has a compact expression which makes
its implementation feasible, while it is not the case of a randomly chosen function. In
our context, since all the inner permutations we consider use randomly-chosen round-
constants, distinguishers (aka structural distinguishers) are related to the classical notion of
indistinguishability of the family of keyed permutations, obtained when the round-constant
sequence varies. For HadesMiMC and Marvellous which both use randomly generated
MDS matrices, the family of permutations can even be further extended by taking into
account all round-constants and all Cauchy MDS matrices.

Another question is whether the existence of distinguishers on the inner permutation 𝜋
impacts the security of the whole hash function. While a distinguisher on 𝜋 cannot always
be turned into a distinguisher for the hash function, it clearly invalidates the security
arguments provided by the indifferentiability proof of the sponge construction [BDPV08].
Indeed, proving that a hash function following the sponge construction has 𝑐

2 log2 𝑞 security
bits requires that the underlying inner permutation is ideal. For this reason, the authors of
Keccak first advocate following the so-called hermetic sponge strategy [BDPV09, Page 13],
i.e. using the sponge construction with an inner permutation that should not have any
structural distinguisher (except the existence of a compact description). It is worth
noticing that the authors of most of the designs we consider claim that their proposal
follow the hermetic sponge strategy, which means that their security claims assume that
the inner permutation cannot be distinguished from an ideal permutation. In this sense,
any distinguisher on the inner permutation of one of these candidates invalidates the
designers’ security claims. Even if it does not imply the existence of an attack against
the full hash function, it reveals some non-ideal behavior which was not expected by the
designers.

A related question is to understand to which extent the sponge construction differs
from an ideal hash function when the inner permutation differs from an ideal permutation.
One may think of this notion as a form of robustness: even if a weakness of a certain



A. Canteaut (ed.) 9

type is discovered on the inner permutation in the future, the corresponding hash function
would remain almost equally ideal. During the SHA-3 competition, several works try to
adapt the original indifferentiability proof of some constructions to the case where the inner
permutation is not ideal but randomly chosen within the set of permutations having a
specific structural property, see e.g. [BCC+09, BFL11]. But such proofs are quite involved
and it usually seems difficult to guarantee an appropriate security level in the presence of
structural distinguisher for the inner permutation.

4 GMiMC

4.1 Description

GMiMC is a family of block ciphers designed by Albrecht et al. in 2019 [AGP+19a] based
on different types of Feistel network using 𝑥3 over the field corresponding to the branch
alphabet as a round function. Among the several variants proposed by the designers, the
one chosen by StarkWare and analyzed in this report is the variant using an unbalanced
Feistel network with an expanding round function, named GMiMCerf (see Figure 2). For
the sake of simplicity, since the other variants are not studied in the report, this particular
variant will be called GMiMC. In the whole paper, the rounds (and round constants) are
numbered starting from 1, and the branches are numbered from 1 to 𝑡 where Branch 1 is
the leftmost branch. A specificity of GMiMC is that the designers’ security claims concern
the primitive instantiated over a prime field. They mention that, “even if GMiMC can be
instantiated over F2𝑛 , [they] do not provide the number of rounds to guarantee security in
this scenario”.

In the block-cipher setting with key size equal to 𝑛 = log2 𝑞 bits, the key schedule is
trivial, i.e. the master key is added to the input of the cube function at every round. It is
worth noticing that this very simple key schedule has been shown to be a major weakness.
Indeed, due to the existence of a related-key differential characteristics with probability 1,
a variant of the slide attack allows a key recovery in 2𝑛/2 operations independently from
the number of rounds [Bon19]. However, it seems difficult to leverage the underlying
property in the hash-function setting we are focusing on.

Algorithm 1 GMiMC with block-size 𝑡 and 𝑅 rounds.
Input: (𝑥0, . . . , 𝑥𝑡−1) ∈ F𝑡

for 𝑖 from 0 to (𝑅− 1) do
𝑦 ← (𝑥0 + RC𝑖)3

(𝑥0, . . . , 𝑥𝑡−1)← (𝑥1 + 𝑦, 𝑥2 + 𝑦, . . . , 𝑥𝑡−1 + 𝑦, 𝑥0)
end for

Output: (𝑥0, . . . , 𝑥𝑡−1)

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

rc
x3

Figure 2: One round of the GMiMC permutation with 𝑡 = 12.



10 Report on the security of STARK-friendly hash functions

For the parameters we focus on, namely 𝑡 = 12 and F𝑞 = F𝑝 with 𝑝 = 261 + 20×232 + 1,
i.e. 𝑛 = 61, the number of rounds is 𝑅 = 101. Note that it is unclear from the discussion
in [AGP+19b, Page 10] whether this number of rounds aims at avoiding distinguishers of
complexity less than 𝑞𝑡, or less than 𝑞 only.

4.2 Integral distinguishers on the full GMiMC

4.2.1 Integral attacks over non-binary fields

The notion of integral attacks has been introduced by Knudsen and Wagner [KW02] and
captures several variants including saturation attacks and higher-order differential attacks.
These attacks have been used for cryptanalyzing many ciphers, but to our best knowledge,
all of them operate on a binary field. Indeed, the main property behind these attacks is
that, for any 𝐹 : F𝑚

2 → F𝑚
2 and for any affine subspace 𝑉 ⊂ F𝑚

2 ,∑︁
𝑥∈𝑉

𝐹 (𝑥) = 0

when deg 𝐹 < dim 𝑉 . This comes from the fact that the sum of the images by 𝐹 of
all inputs in 𝑉 corresponds to a value of a derivative of 𝐹 of order (dim 𝑉 ) [Lai94]. It
follows that this derivative has degree at most (deg(𝐹 )− dim 𝑉 ) and thus vanishes when
deg 𝐹 < dim 𝑉 . It is then possible to saturate some input bits of 𝐹 and to use as a
distinguishing property the fact that the output bits are balanced, i.e. they sum to zero.
The fact that the sum over all 𝑥 ∈ 𝑉 of 𝐹 (𝑥) corresponds to the value of a higher-order
derivative does not hold anymore in odd characteristic, and the same technique cannot be
applied directly.

Higher-order differentials over F𝑞 then need to use a generalized notion of differentiation
as analyzed in [SWMSP17] (see also [AP11]). However, we can show that for the particular
case of saturation attacks, the same technique can be used in the general case of a field F𝑞

– even in odd characteristic. Indeed, we can exploit the following result.

Proposition 1. For any 𝐹 : F𝑞 → F𝑞 with deg(𝐹 ) < 𝑞 − 1,∑︁
𝑥∈F𝑞

𝐹 (𝑥) = 0 .

Proof. The result is due to following well-known property: for any exponent 𝑘 with
1 ≤ 𝑘 ≤ 𝑞 − 2, ∑︁

𝑥∈F𝑞

𝑥𝑘 = 0 .

Moreover, when 𝑘 = 0, we have
∑︀

𝑥∈F𝑞
𝑥0 = 𝑞 = 0.

Proposition 1 can be generalized to the multivariate case, i.e. to functions from F𝑘
𝑞 into

F𝑞, which can be expressed as polynomials in the ring

F𝑞[𝑥1, . . . , 𝑥𝑘]/ (𝑥𝑞
1 − 𝑥1, . . . , 𝑥𝑞

𝑘 − 𝑥𝑘) .

Corollary 1. For any 𝐹 : F𝑡
𝑞 → F𝑞 with deg(𝐹 ) < 𝑘(𝑞 − 1) and any affine subspace

𝑉 ⊆ F𝑡
𝑞 of dimension at least 𝑘, ∑︁

𝑥∈𝑉

𝐹 (𝑥) = 0 .

Proof. Let 𝑉 be an affine space of dimension 𝜅 ≤ 𝑘 and 𝐴 an affine permutation over F𝑡
𝑞

such that 𝐴(𝑉 ) = {(𝑦, 0, . . . , 0), 𝑦 ∈ F𝜅
𝑞 }. Then,∑︁

𝑥∈𝑉

𝐹 (𝑥) =
∑︁
𝑥∈𝑉

(𝐹 ∘𝐴−1)(𝐴(𝑥)) =
∑︁

𝑦1,...,𝑦𝜅∈F𝑞

(𝐹 ∘𝐴−1)(𝑦1, . . . , 𝑦𝜅, 0, . . . , 0) = 0



A. Canteaut (ed.) 11

since deg(𝐹 ∘𝐴−1) = deg 𝐹 < 𝑘(𝑞 − 1).

Based on this observation, a saturation attack with data complexity 𝑞𝑘 can be mounted
whenever the degree of 𝐹 as a polynomial over F𝑞 is strictly less than 𝑘(𝑞 − 1), even if F𝑞

is a field of odd characteristic.

4.2.2 Integral distinguishers over multiplicative subgroups

We generalize the notion of integral distinguishers to multiplicative subgroups using the
following property.

Proposition 2. Let G be a multiplicative subgroup of F×
𝑞 . For any 𝐹 : F𝑞 → F𝑞 such that

deg(𝐹 ) < |G|, ∑︁
𝑥∈G

𝐹 (𝑥)− 𝐹 (0) · |G| = 0 .

This is a strict generalization of Proposition 1, for which |G| = 𝑞 − 1.

Proof. The result is a direct consequence of the following well-known property: for any
exponent 𝑘 with 1 ≤ 𝑘 ≤ |G| − 1, ∑︁

𝑥∈G
𝑥𝑘 = 0 .

Moreover, when 𝑘 = 0, we have
∑︀

𝑥∈G 𝑥0 = |G|.

We also note that Corollary 1 can be adapted to multiplicative subgroups in a straight-
forward manner. The power of summing over multiplicative subgroups (rather than over
the entire field F𝑞) comes from the fact that if F𝑞 contains small multiplicative subgroups
(as for the fields used for the concrete instances specified in Table 1), the complexity of
the attacks may be fine-tuned and significantly reduced.

4.2.3 Integral distinguisher on GMiMC

Using Corollary 1, we can exhibit a distinguisher for (3𝑡 − 4 + ⌊log3(𝑞 − 2)⌋) rounds of
GMiMC. A remarkable property is that this distinguisher holds for any finite field. It is
obtained by saturating a single branch of the Feistel network and consequently has data
complexity 𝑞. Indeed, we choose a set of inputs where the (𝑡− 2) leftmost branches are
inactive, while the rightmost branch is determined by the value of Branch (𝑡− 1). More
precisely, we consider a set of inputs of the form

𝒳 = {(𝛼1, . . . , 𝛼𝑡−2, 𝑥, 𝑓(𝑥)) | 𝑥 ∈ F𝑞} (1)

where the 𝛼𝑖 are arbitrary constants in F𝑞 and 𝑓 is defined by

𝑓(𝑥) = −
(︁

𝑥 +
𝑡−2∑︁
𝑖=1

𝛽𝑖 + RC𝑡−1

)︁3
− 𝑥− 2

𝑡−2∑︁
𝑖=1

𝛽𝑖 − RC𝑡−1 − RC𝑡

and 𝛽1, . . . , 𝛽𝑡−2 are constant values derived from 𝛼1, . . . , 𝛼𝑡−2 by

𝛽1 = (𝛼1 + RC1)3 and 𝛽𝑖+1 =
(︁

𝛼𝑖+1 +
𝑖∑︁

𝑗=1
𝛽𝑗 + RC𝑖+1

)︁3
.

Let us first consider the first (𝑡− 2) rounds. We observe that, at Round 𝑖, 1 ≤ 𝑖 ≤ 𝑡− 2,
the output of the Sbox corresponds to 𝛽𝑖 and is added to all branches except the leftmost
branch of the input. It follows that the output of Round (𝑡− 2) corresponds to

(𝑥 +
∑︀𝑡−2

𝑖=1 𝛽𝑖, 𝑓(𝑥) +
∑︀𝑡−2

𝑖=1 𝛽𝑖, 𝛾1, . . . , 𝛾𝑡−2)



12 Report on the security of STARK-friendly hash functions

where (𝛾1, . . . , 𝛾𝑡−2) are constants (see Figure 3). Therefore, if 𝑥′ denotes the value of
Branch 1, i.e., 𝑥′ = 𝑥 +

∑︀𝑡−2
𝑖=1 𝛽𝑖, we have that Branch 2 corresponds to

𝑓

(︃
𝑥′ −

𝑡−2∑︁
𝑖=1

𝛽𝑖

)︃
+

𝑡−2∑︁
𝑖=1

𝛽𝑖 = − (𝑥′ + RC𝑡−1)3 − 𝑥′ − RC𝑡−1 − RC𝑡 .

The inputs of Round 𝑡 are then

{(−𝑥′ − RC𝑡 − RC𝑡−1, 𝛾1 + (𝑥′ + RC𝑡−1)3, . . . , 𝛾𝑡−2 + (𝑥′ + RC𝑡−1)3, 𝑥′) | 𝑥′ ∈ F𝑞}

and the inputs of Round (𝑡 + 1) are

{(𝛾1, . . . , 𝛾𝑡−2, 𝑥′ − (𝑥′ + RC𝑡−1)3,−𝑥′ − RC𝑡 − RC𝑡−1) | 𝑥′ ∈ F𝑞} .

The following (𝑡 − 2) rounds do not activate the Sbox, implying that the input set at
Round (2𝑡− 1) has the form

{(𝑥′ − (𝑥′ + RC𝑡−1)3 + 𝛿1,−𝑥′ + 𝛿2, 𝛿3, . . . , 𝛿𝑡) | 𝑥′ ∈ F𝑞} (2)

for some fixed values 𝛿1, . . . , 𝛿𝑡 determined by the constants. Each coordinate of this input
word can then be seen as a 𝑞-ary polynomial in 𝑥′ of degree at most three. It follows that,
after 𝑟 additional rounds, the set (2) is transformed into a set of elements (𝑧1, . . . , 𝑧𝑡),
whose coordinates have degree at most 3𝑟+1. Prop. 1 then implies that all 𝑧𝑖 are balanced
if 3𝑟+1 ≤ 𝑞 − 2, i.e., if 𝑟 ≤ ⌊log3(𝑞 − 2)⌋ − 1.

Adding (𝑡 − 1) rounds. We can add some more rounds by using the following relation
over (𝑡− 1) rounds of GMiMC.

Proposition 3. Let (𝑥1, . . . , 𝑥𝑡) and (𝑦1, . . . , 𝑦𝑡) denote the input and output of (𝑡 −
1) rounds of GMiMC.

𝑡∑︁
𝑖=2

𝑦𝑖 − (𝑡− 2)𝑦1 =
𝑡−1∑︁
𝑖=1

𝑥𝑖 − (𝑡− 2)𝑥𝑡 . (3)

Proof. Let (𝑥ℓ
1, . . . , 𝑥ℓ

𝑡) denote the input of Round ℓ. It can be observed that, for any
𝑖, 𝑗 ∈ {1, . . . , 𝑡− 1},

𝑥ℓ
𝑖 = 𝑥ℓ−1

𝑖+1 + (𝑥ℓ
𝑗 − 𝑥ℓ−1

𝑗+1) and 𝑥ℓ
𝑡 = 𝑥ℓ−1

1 .

It follows that, for any 𝑗, 1 ≤ 𝑗 ≤ (𝑡− 1),

𝑡∑︁
𝑖=1

𝑥ℓ
𝑖 − (𝑡− 1)𝑥ℓ

𝑗 =
𝑡∑︁

𝑖=1
𝑥ℓ−1

𝑖 − (𝑡− 1)𝑥ℓ−1
𝑗+1 .

By applying this equality (𝑡− 1) times, we deduce (3).

From the previous proposition, we deduce that after a total of

𝑅 = 3𝑡− 4 + ⌊log3(𝑞 − 2)⌋ rounds,

the output (𝑣1, . . . , 𝑣𝑡) of GMiMC satisfies
∑︀𝑡

𝑖=2 𝑣𝑖 − (𝑡 − 2)𝑣1 =
∑︀𝑡−1

𝑖=1 𝑧𝑖 − (𝑡 − 2)𝑧𝑡,
which is a polynomial in 𝑥′ of degree at most (𝑞 − 2). This leads to a distinguisher with
complexity 𝑞 on 𝑅 rounds, i.e., 70 rounds for the parameters we focus on.



A. Canteaut (ed.) 13

RC1

x3

RC2

x3

RC3

x3

RC4

x3

RC5

x3

RC6

x3

RC7

x3

α1 α2 x f(x)

β1

α2 + β1︸ ︷︷ ︸
γ2

x + β1 f(x) + β1 α1

β2

x + β1 + β2︸ ︷︷ ︸
x′

f(x) + β1 + β2

α1 + β2︸ ︷︷ ︸
γ1

γ2

Round (t-1)
(x′ + RC3)3

−x′ − RC3 − RC4 γ1 + (x′ + RC3)3 γ2 + (x′ + RC3)3

x′

−(x′ + RC3)3

γ1 γ2 x′ − (x′ + RC3)3

−x′ − RC3 − RC4

Round (t+1)
γ′3

γ′2 x′ − (x′ + RC3)3 + γ′3

x′ − (x′ + RC3)3 + δ1 −x′ + δ2 δ3
δ4

Round (2t-1)

Figure 3: First rounds of the integral distinguisher on GMiMC (with 𝑡 = 4) as described
in Section 4.2.3.



14 Report on the security of STARK-friendly hash functions

(2𝑡− 2) rounds

? ? ??

? ? ? ?

⌊log3(𝑞 − 2)⌋ − 1 rounds

? ? ??

? ? ? ?

(𝑡− 1) rounds

? ? ??

? ? ? ?

𝛼1 𝛼2 𝑥 𝑓(𝑥) 𝑥 ∈ F𝑞

𝑔(𝑥′) −𝑥′ + 𝛿2 𝛿𝑡−1 𝛿𝑡 𝑥′ ∈ F𝑞

𝑧1 𝑧2 𝑧𝑡−1 𝑧𝑡

𝑣1 𝑣2 𝑣𝑡−1 𝑣𝑡

polynomial in 𝑥′

of degree ≤ 𝑞 − 2

𝑄(𝑥′) =
∑︀𝑡

𝑖=2 𝑣𝑖 − (𝑡− 2)𝑣1

Figure 4: Integral distinguisher on GMiMC.



A. Canteaut (ed.) 15

4.2.4 Zero-sum distinguishers on the full permutation

Saturating a single branch. Since we are analyzing a permutation (or a family of
permutations parameterized by the round-constants), there is no secret material involved
in the computation, implying that a distinguisher can be built from some internal states
in the middle of the primitive, not only from inputs and outputs, exactly as in the known-
key setting for block ciphers [KR07]. This leads to zero-sum distinguishers, which were
introduced by Aumasson and Meier [AM09] and exhibited for several hash functions,
including SHA-3 [AKK+10, BCD11].

The previously described distinguisher can be extended by (𝑡−2+⌊log3(𝑞−2)⌋) rounds
backwards. This is realized by choosing the internal states after (𝑡−2+⌊log3(𝑞−2)⌋) rounds
in 𝒳 , as defined by (1). The inverse of one round of GMiMC is still a round of a Feistel
network of the same form and it has degree three over F𝑞. Then, the coordinates (𝑦1, . . . , 𝑦𝑡)
of the images of the elements in 𝒳 by 𝑟 backward rounds can be seen as univariate
polynomials in 𝑥 with degree at most 3𝑟+1. Exactly as in the forward direction, after
(⌊log3(𝑞 − 2)⌋ − 1) rounds, the degree of these polynomials cannot exceed (𝑞 − 2).

Based on Prop. 3, we can then add (𝑡− 1) rounds backwards. Indeed, the input of the
first round of the permutation (𝑢1, . . . , 𝑢𝑡) is related to the output of Round (𝑡− 1), i.e.
(𝑦1, . . . , 𝑦𝑡), by

𝑡∑︁
𝑖=2

𝑦𝑖 − (𝑡− 2)𝑦1 =
𝑡−1∑︁
𝑖=1

𝑢𝑖 − (𝑡− 2)𝑢𝑡 ,

and the left-hand term of this equation is a polynomial in 𝑥 of degree at most (𝑞 − 2),
implying that

(︀∑︀𝑡−1
𝑖=1 𝑢𝑖 − (𝑡− 2)𝑢𝑡

)︀
sum to zero.

Similarly, we can apply the previously described distinguisher in the forward direction,
and deduce that the outputs (𝑣1, . . . , 𝑣𝑡) of the permutation after (3𝑡 − 4 + ⌊log3(𝑞 −
2)⌋) additional rounds are such that

(︀∑︀𝑡
𝑖=2 𝑣𝑖 − (𝑡− 2)𝑣1

)︀
sum to zero. This leads to a

distinguisher with complexity 𝑞 for a total of

4𝑡− 6 + 2⌊log3(𝑞 − 2)⌋) rounds,

which is higher than the number of rounds proposed in all StarkWare challenges, except in
the case where 𝑞 exceeds the claimed security level (see Table 2).

Saturating two branches. When 𝑡 ≥ 4, it is possible to exhibit a similar distinguisher on
more rounds with complexity 𝑞2 by saturating two branches. In this case, we start from
Round 𝑚 in the middle with a set of internal states

𝒴 = {(𝛼1, . . . , 𝛼𝑡−4, 𝑥, 𝑓(𝑥), 𝑔(𝑦), 𝑦) | 𝑥, 𝑦 ∈ F𝑞}

where

𝑓(𝑥) = −
(︁

𝑥 +
𝑡−4∑︁
𝑖=1

𝛽𝑖 + RC𝑚+𝑡−4

)︁3
− 𝑥− 2

𝑡−4∑︁
𝑖=1

𝛽𝑖 − RC𝑚+𝑡−4 − RC𝑚+𝑡−3

𝑔(𝑦) = (𝑦 + RC𝑚−1)3 − 𝑦 − RC𝑚−1 − RC𝑚−2

and 𝛽1, . . . , 𝛽𝑡−4 are defined as before by replacing RC𝑖 by RC𝑚+𝑖−1.

∙ Computing forwards. As depicted on Figure 6, the corresponding set at the input
of Round (𝑚 + 𝑡− 4) is then of the form

{(𝑥′,− (𝑥′ + RC𝑚+𝑡−4)3−𝑥′−RC𝑚+𝑡−4−RC𝑚+𝑡−3, 𝛾1(𝑦), . . . , 𝛾𝑡−2(𝑦)) | 𝑥′, 𝑦 ∈ F𝑞}

where (𝛾1, . . . , 𝛾𝑡−2) are some values which depend on 𝑦 only. After two more rounds,
we then get some internal states whose (𝑡− 2) leftmost branches do not depend on 𝑥′.



16 Report on the security of STARK-friendly hash functions

(𝑡− 1) rounds

? ? ??

? ? ? ?

⌊log3(𝑞 − 2)⌋ − 1 rounds

? ? ??

? ? ? ?

(2𝑡− 2) rounds

? ? ??

? ? ? ?

⌊log3(𝑞 − 2)⌋ − 1 rounds

? ? ??

? ? ? ?

(𝑡− 1) rounds

? ? ??

? ? ? ?

𝑦1 𝑦2 𝑦𝑡−1 𝑦𝑡

𝛼1 𝛼2 𝑥 𝑓(𝑥) 𝑥 ∈ F𝑞

polynomial in 𝑥
of degree ≤ 𝑞 − 2

𝑔(𝑥′) −𝑥′ + 𝛿2 𝛿𝑡−1 𝛿𝑡 𝑥′ ∈ F𝑞

𝑧1 𝑧2 𝑧𝑡−1 𝑧𝑡

𝑣1 𝑣2 𝑣𝑡−1 𝑣𝑡

polynomial in 𝑥′

of degree ≤ 𝑞 − 2

𝑄(𝑥′) =
∑︀𝑡

𝑖=2 𝑣𝑖 − (𝑡− 2)𝑣1

𝑢1 𝑢2 𝑢𝑡−1 𝑢𝑡 𝑄′(𝑥) =
∑︀𝑡−1

𝑖=1 𝑢𝑖 − (𝑡− 2)𝑢𝑡

Figure 5: Zero-sum distinguisher on GMiMC with complexity 𝑞.



A. Canteaut (ed.) 17

It follows that each coordinate of the input of Round (𝑚 + 2𝑡− 4) is a polynomial
in 𝑥′ and 𝑦 of degree at most three in 𝑥′. After (⌊log3(𝑞 − 2)⌋ − 1) rounds, we get
that each coordinate is a polynomial of degree at most (𝑞 − 2) in 𝑥′. Then, with the
same technique as before, we can add (𝑡− 1) rounds and show that the output of the
permutation (𝑣1, . . . , 𝑣𝑡) is such that the linear combination

(︀∑︀𝑡−1
𝑖=1 𝑣𝑖 − (𝑡− 2)𝑣𝑡

)︀
sums to zero after (3𝑡− 6 + ⌊log3(𝑞 − 2)⌋) rounds.

RC1

x3

RC2

x3

RC3

x3

RC4

x3

RC5

x3

RC6

x3

RC7

x3

δ1(x) −y + δ2(x) y + (y + RC3)3 + δ3(x) δ4(x) δ4(x)

−y − RC3 − RC2 y + (y + RC3)3 α1 x
f(x)

−(y + RC3)3

y α1 − (y + RC3)3 x − (y + RC3)3 f(x) − (y + RC3)3
−y − RC3 − RC2

(y + RC3)3

α1 x f(x) g(y)
y

β1 Round m

x + β1︸ ︷︷ ︸
x′

f(x) + β1 g(y) + β1 y + β1 α1

(x′ + RC5)3

−x′ − RC5 − RC6 γ1(y) + (x′ + RC5)3 y + β1 + (x′ + RC5)3 α1 + (x′ + RC5)3

x′

−(x′ + RC5)3

γ1(y) γ2(y) α1 x′ − (x′ + RC5)3

−x′ − RC5 − RC6

Figure 6: Middle rounds of the zero-sum distinguisher on GMiMC (with 𝑡 = 5) as described
in Section 4.2.4.

∙ Computing backwards. Starting from Round 𝑚 and computing backwards, we
get that the input of Round (𝑚− 1) is of the form

(𝑦, 𝛼1−(𝑦+RC𝑚−1)3, . . . , 𝑥−(𝑦+RC𝑚−1)3, 𝑓(𝑥)−(𝑦+RC𝑚−1)3,−𝑦−RC𝑚−1−RC𝑚−2)



18 Report on the security of STARK-friendly hash functions

and the input of Round (𝑚− 2) equals

(−𝑦 − RC𝑚−1 − RC𝑚−2, 𝑦 + (𝑦 + RC𝑚−1)3, 𝛼1, . . . , 𝑥, 𝑓(𝑥)) .

Then, the following (𝑡− 2) rounds do not activate the Sbox, implying that all the
coordinates of the input of Round (𝑚−𝑡) are polynomials in 𝑥 and 𝑦 of degree at most
three in 𝑦. We deduce that the input (𝑢1, . . . , 𝑢𝑡) of Round (𝑚−2𝑡+2−⌊log3(𝑞−2)⌋)
is such that the linear combination

(︀∑︀𝑡−1
𝑖=1 𝑢𝑖 − (𝑡− 2)𝑢𝑡

)︀
sums to zero.

This zero-sum distinguisher then covers a total of

5𝑡− 8 + 2⌊log3(𝑞 − 2)⌋) rounds,

which is detailed in Table 2 for the relevant parameters.

Table 2: Number of rounds of GMiMC covered by the zero-sum distinguishers of com-
plexity 𝑞 and 𝑞2.

Security Parameters Number of rounds
log2 𝑞 𝑡 Full ZS with complexity 𝑞 ZS with complexity 𝑞2

128 bits

61 12 101 118 128
125 4 166 166 –
125 12 182 198 –
253 3 326 – –
253 11 342 – –

256 bits 125 8 174 182 188
125 14 186 206 218

4.2.5 Exploiting integral distinguishers over multiplicative subgroups

A noticeable shortcoming of the integral attacks over F𝑞, as demonstrated by Table 2, is
that they do not give any result for primitives over large fields F𝑞 (for which log2 𝑞 ≈ 256).
However, by exploiting integral distinguishers over multiplicative subgroups of F𝑞 (e.g.,
for the specific choice of 𝑞 = 2253 + 2199 + 1), we obtain essentially the same results for
GMiMC instances with large 𝑞 as we obtain for instances with small 𝑞. For example, in
Section 4.2.3 we derived an integral distinguisher on

𝑅 = 3𝑡− 4 + ⌊log3(𝑞 − 2)⌋ rounds,

with complexity 𝑞. By exploiting any multiplicative subgroup of size |G| = 2𝑠 for 𝑠 ≤ 199
when 𝑞 = 2253 + 2199 + 1, we obtain an integral distinguisher on

𝑅 = 3𝑡− 4 + ⌊log3(|G| − 1)⌋ rounds,

with complexity |G| + 1. Following this idea, we obtain zero-sum distinguishers with
complexity 2128 for the two variants with log2 𝑞 = 253. Using a subgroup of size |G| = 2128,
this distinguisher covers 166 rounds for 𝑡 = 3 and 198 rounds for 𝑡 = 11 (see Table 3).

Moreover, even for smaller fields, we can fine-tune the size of G to reduce the complexity
of the attack. This is relevant especially for cases where an attack with complexity 𝑞 can
reach more rounds than the ones used by the primitive (which is indeed the case, as shown
in Table 2). For example, as derived in Section 4.2.4, we have a zero-sum property for

4𝑡− 6 + 2⌊log3(𝑞 − 2)⌋ rounds,



A. Canteaut (ed.) 19

with complexity 𝑞. For the GMiMC variant with 𝑞 = 261 + 20× 232 + 1 and 𝑡 = 12, we
use a subgroup of size 233 · 167 · 211 ≈ 248 (which divides 𝑞 − 1), and obtain a zero-sum
property for

4𝑡− 6 + 2⌊log3(248 − 1)⌋ = 102 rounds,

with complexity of about 248 (which covers the full permutation). Similar results are
presented for all variants in Table 3.

Table 3: Complexities of the zero-sum distinguishers of GMiMC obtained by saturating a
multiplicative subgroup.

Security Parameters zero-sum distinguisher
log2 𝑞 𝑡 nb of rounds nb of rounds complexity

128 bits

61 12 101 102 248

125 4 166 166 2125

125 12 182 182 2111

253 3 326 166 2128

253 11 342 198 2128

256 bits 125 8 174 174 2118

125 14 186 186 2108

4.3 Impossible differential attacks

The longest impossible differential obtained by the designers of GMiMC covers (2𝑡 −
2) rounds [AGP+19b, Page 46]. Also for this type of attack, we observe that the designers’
security claim is too optimistic. Indeed, we can construct impossible differentials for (3𝑡−4)
rounds, which improves the one observed by the designers by (𝑡− 2) rounds.

The designers focused on the fact that the longest differential trail with probability 1
covers (𝑡− 1) rounds, which is described as (0, . . . , 0, 𝛼) 𝑡−1 rounds−→ (𝛼, 0, . . . , 0), where 𝛼 is
an arbitrary non-zero difference. Then, by combining two of those trails, they observed
that the input difference (0, . . . , 0, 𝛼) and output difference (𝛽, 0, . . . , 0) are impossible
differentials on (2𝑡− 2) rounds, where 𝛽 is an arbitrary non-zero difference that can be
equal to 𝛼.

(0, . . . , 0, 𝛼) ℛ𝑡−1

−→ (𝛼, 0, . . . , 0) ̸= (0, . . . , 0, 𝛽) ℛ𝑡−1

−→ (𝛽, 0, . . . , 0)

The designers concluded that conservatively 2𝑡 rounds are secure when the security level
corresponds to the block size 𝑛 and (3𝑡− 1) rounds are secure for security level of 𝑡𝑛 bits.

Now, to construct impossible differentials over (3𝑡− 4) rounds, the idea is to reuse the
previous (𝑡− 1)-round truncated differentials, but further include a few more rounds in
the middle. Hence, the impossible differentials can be described as

(0, . . . , 0, 𝛼0) ℛ3𝑡−4

9 (𝛽0, 0, . . . , 0),

where 𝛼0, 𝛽0 are non-zero difference satisfying 𝛼0 ̸= 𝛽0.
The brief explanation of this impossible differentials is as follows. We further extend

(𝛼0, 0, . . . , 0) by 𝑡/2− 1 rounds. The new differences successively produced by the cube
mapping are unpredictable, hence we denote them by 𝛼1, 𝛼2, . . . , 𝛼𝑡/2−1. Similarly, we
further extend (0, . . . , 0, 𝛽0) by 𝑡/2 − 1 rounds backwards by using the similar notation
𝛽1, 𝛽2, . . . , 𝛽𝑡/2−1. Then the difference of each branch in the very middle is described in
two ways: by a linear combination of 𝛼𝑖 and by a linear combination of 𝛽𝑖. To be a valid



20 Report on the security of STARK-friendly hash functions

differential propagation, those differences must be equal for all the branches, which yields
a system of 𝑡 linear equations with 2(𝑡/2− 1) = 𝑡− 2 variables. By solving the system,
we obtain that 𝛼0 = 𝛽0 is a necessary condition to be a valid differential propagation. In
other words, for any 𝛼0, 𝛽0 with 𝛼0 ̸= 𝛽0, the propagation is impossible.

The detailed analysis for 𝑡 = 12 is as follows. Here we use the notation 𝛼[𝑖, 𝑗, 𝑘, · · · ] to
denote 𝛼𝑖⊕𝛼𝑗 ⊕𝛼𝑘⊕· · · . A notation 𝛽[𝑖, 𝑗, 𝑘] is defined in the same way for the backward
propagation. Table 4 details the propagation of the differences over 16 rounds, in the
forward and in the backward directions.

Then, the propagation of differences in Table 4 is valid only if we have equality between
all differences, i.e., if the following equations are satisfied.

𝛼1 ⊕ 𝛼2 ⊕ 𝛼3 ⊕ 𝛼4 ⊕ 𝛼5 = 𝛽1 ⊕ 𝛽2 ⊕ 𝛽3 ⊕ 𝛽4,

𝛼1 ⊕ 𝛼2 ⊕ 𝛼3 ⊕ 𝛼4 ⊕ 𝛼5 = 𝛽1 ⊕ 𝛽2 ⊕ 𝛽3 ⊕ 𝛽5,

𝛼1 ⊕ 𝛼2 ⊕ 𝛼3 ⊕ 𝛼4 ⊕ 𝛼5 = 𝛽1 ⊕ 𝛽2 ⊕ 𝛽4 ⊕ 𝛽5,

𝛼1 ⊕ 𝛼2 ⊕ 𝛼3 ⊕ 𝛼4 ⊕ 𝛼5 = 𝛽1 ⊕ 𝛽3 ⊕ 𝛽4 ⊕ 𝛽5,

𝛼1 ⊕ 𝛼2 ⊕ 𝛼3 ⊕ 𝛼4 ⊕ 𝛼5 = 𝛽0 ⊕ 𝛽2 ⊕ 𝛽3 ⊕ 𝛽4 ⊕ 𝛽5,

𝛼1 ⊕ 𝛼2 ⊕ 𝛼3 ⊕ 𝛼4 ⊕ 𝛼5 = 𝛽1 ⊕ 𝛽2 ⊕ 𝛽3 ⊕ 𝛽4 ⊕ 𝛽5,

𝛼0 ⊕ 𝛼2 ⊕ 𝛼3 ⊕ 𝛼4 ⊕ 𝛼5 = 𝛽1 ⊕ 𝛽2 ⊕ 𝛽3 ⊕ 𝛽4 ⊕ 𝛽5,

𝛼1 ⊕ 𝛼3 ⊕ 𝛼4 ⊕ 𝛼5 = 𝛽1 ⊕ 𝛽2 ⊕ 𝛽3 ⊕ 𝛽4 ⊕ 𝛽5,

𝛼1 ⊕ 𝛼2 ⊕ 𝛼4 ⊕ 𝛼5 = 𝛽1 ⊕ 𝛽2 ⊕ 𝛽3 ⊕ 𝛽4 ⊕ 𝛽5,

𝛼1 ⊕ 𝛼2 ⊕ 𝛼3 ⊕ 𝛼5 = 𝛽1 ⊕ 𝛽2 ⊕ 𝛽3 ⊕ 𝛽4 ⊕ 𝛽5,

𝛼1 ⊕ 𝛼2 ⊕ 𝛼3 ⊕ 𝛼4 = 𝛽1 ⊕ 𝛽2 ⊕ 𝛽3 ⊕ 𝛽4 ⊕ 𝛽5.

By summing up all the equations, we get 𝛼0 = 𝛽0. Hence, the propagation is impossible
when 𝛼0 ̸= 𝛽0.

The number of rounds covered by this impossible differential is higher than expected by
the designers. However, since it is rather far from the total number of rounds, we do not
provide a detailed analysis of the complexity of the best attacks exploiting this differential.

4.4 A Differential Distinguisher

The original paper [AGP+19b, Appendix D] analyzes the resistance of GMiMC against
differential attacks. Most notably, the designers exhibit a differential characteristic over
(𝑡 + 1) rounds with two active Sboxes, with probability 2−(2𝑛+2) and they conjecture that
the corresponding differential is optimal. They deduce that

𝑅 = 2 + (𝑡 + 1)
⌈︁ 𝑡𝑛

2(𝑛− 1)

⌉︁
rounds

are sufficient to resist differential cryptanalysis in the sense that the data complexity of
the attack exceeds the size of the full codebook. With the parameters we focus on, this
corresponds to 93 rounds.

A better differential. We have exhibited another differential, over 𝑡 rounds, which leads
to a much more efficient attack. Let 𝛼 and 𝛼′ be two differences in F𝑞. Then, the difference
(0, . . . , 0, 𝛼, 𝛼′) propagates through 𝑡 rounds of the permutation as follows:

(0, . . . , 0, 𝛼, 𝛼′) ℛ𝑡−2
−→ (𝛼, 𝛼′, 0 . . . , 0) ℛ−→ (𝛼′ + 𝛽, 𝛽, . . . , 𝛽, 𝛼) ℛ−→ (𝛽 + 𝛽′, . . . , 𝛽 + 𝛽′, 𝛼 + 𝛽′, 𝛼′ + 𝛽) ,

where 𝛼
𝑆→ 𝛽 denotes the Sbox transition occurring at Round (𝑡 − 1) and 𝛼′ 𝑆→ 𝛽′ the

Sbox transition occurring at Round 𝑡.



A. Canteaut (ed.) 21

Table 4: New Impossible Differentials of 3𝑡− 4 rounds for 𝑡 = 12

Δ
𝑆

0
Δ

𝑆
1

Δ
𝑆

2
Δ

𝑆
3

Δ
𝑆

4
Δ

𝑆
5

Δ
𝑆

6
Δ

𝑆
7

Δ
𝑆

8
Δ

𝑆
9

Δ
𝑆

10
Δ

𝑆
11

0
0

0
0

0
0

0
0

0
0

0
𝛼

0
1

0
0

0
0

0
0

0
0

0
0

𝛼
0

0
2

0
0

0
0

0
0

0
0

0
𝛼

0
0

0
3

0
0

0
0

0
0

0
0

𝛼
0

0
0

0
4

0
0

0
0

0
0

0
𝛼

0
0

0
0

0
5

0
0

0
0

0
0

𝛼
0

0
0

0
0

0
6

0
0

0
0

0
𝛼

0
0

0
0

0
0

0
7

0
0

0
0

𝛼
0

0
0

0
0

0
0

0
8

0
0

0
𝛼

0
0

0
0

0
0

0
0

0
9

0
0

𝛼
0

0
0

0
0

0
0

0
0

0
10

0
𝛼

0
0

0
0

0
0

0
0

0
0

0
11

𝛼
0

0
0

0
0

0
0

0
0

0
0

0
12

𝛼
1

𝛼
1

𝛼
1

𝛼
1

𝛼
1

𝛼
1

𝛼
1

𝛼
1

𝛼
1

𝛼
1

𝛼
1

𝛼
0

13
𝛼

[1
2]

𝛼
[1

2]
𝛼

[1
2]

𝛼
[1

2]
𝛼

[1
2]

𝛼
[1

2]
𝛼

[1
2]

𝛼
[1

2]
𝛼

[1
2]

𝛼
[1

2]
𝛼

[0
2]

𝛼
1

14
𝛼

[1
23

]
𝛼

[1
23

]
𝛼

[1
23

]
𝛼

[1
23

]
𝛼

[1
23

]
𝛼

[1
23

]
𝛼

[1
23

]
𝛼

[1
23

]
𝛼

[1
23

]
𝛼

[0
23

]
𝛼

[1
3]

𝛼
[1

2]
15

𝛼
[1

23
4]

𝛼
[1

23
4]

𝛼
[1

23
4]

𝛼
[1

23
4]

𝛼
[1

23
4]

𝛼
[1

23
4]

𝛼
[1

23
4]

𝛼
[1

23
4]

𝛼
[0

23
4]

𝛼
[1

34
]

𝛼
[1

24
]

𝛼
[1

23
]

16
𝛼

[1
23

45
]

𝛼
[1

23
45

]
𝛼

[1
23

45
]

𝛼
[1

23
45

]
𝛼

[1
23

45
]

𝛼
[1

23
45

]
𝛼

[1
23

45
]

𝛼
[0

23
45

]
𝛼

[1
34

5]
𝛼

[1
24

5]
𝛼

[1
23

5]
𝛼

[1
23

4]
im

po
ss

ib
le

w
he

n
𝛼

0
̸=

𝛽
0

16
𝛽

[1
23

4]
𝛽

[1
23

5]
𝛽

[1
24

5]
𝛽

[1
34

5]
𝛽

[0
23

45
]

𝛽
[1

23
45

]
𝛽

[1
23

45
]

𝛽
[1

23
45

]
𝛽

[1
23

45
]

𝛽
[1

23
45

]
𝛽

[1
23

45
]

𝛽
[1

23
45

]
17

𝛽
[1

23
]

𝛽
[1

24
]

𝛽
[1

34
]

𝛽
[0

23
4]

𝛽
[1

23
4]

𝛽
[1

23
4]

𝛽
[1

23
4]

𝛽
[1

23
4]

𝛽
[1

23
4]

𝛽
[1

23
4]

𝛽
[1

23
4]

𝛽
[1

23
4]

18
𝛽

[1
2]

𝛽
[1

3]
𝛽

[0
23

]
𝛽

[1
23

]
𝛽

[1
23

]
𝛽

[1
23

]
𝛽

[1
23

]
𝛽

[1
23

]
𝛽

[1
23

]
𝛽

[1
23

]
𝛽

[1
23

]
𝛽

[1
23

]
19

𝛽
1

𝛽
[0

2]
𝛽

[1
2]

𝛽
[1

2]
𝛽

[1
2]

𝛽
[1

2]
𝛽

[1
2]

𝛽
[1

2]
𝛽

[1
2]

𝛽
[1

2]
𝛽

[1
2]

𝛽
[1

2]
20

𝛽
0

𝛽
1

𝛽
1

𝛽
1

𝛽
1

𝛽
1

𝛽
1

𝛽
1

𝛽
1

𝛽
1

𝛽
1

𝛽
1

21
0

0
0

0
0

0
0

0
0

0
0

𝛽
0

22
0

0
0

0
0

0
0

0
0

0
𝛽

0
0

23
0

0
0

0
0

0
0

0
0

𝛽
0

0
0

24
0

0
0

0
0

0
0

0
𝛽

0
0

0
0

25
0

0
0

0
0

0
0

𝛽
0

0
0

0
0

26
0

0
0

0
0

0
𝛽

0
0

0
0

0
0

27
0

0
0

0
0

𝛽
0

0
0

0
0

0
0

28
0

0
0

0
𝛽

0
0

0
0

0
0

0
0

20
0

0
0

𝛽
0

0
0

0
0

0
0

0
0

30
0

0
𝛽

0
0

0
0

0
0

0
0

0
0

31
0

𝛽
0

0
0

0
0

0
0

0
0

0
0

32
𝛽

0
0

0
0

0
0

0
0

0
0

0
*



22 Report on the security of STARK-friendly hash functions

It follows that, for any possible value of 𝛽, we obtain the following 𝑡-round differential
as soon as 𝛽′ = 𝛽, which occurs with probability 2−𝑛 on average:

(0, . . . , 0, 𝛼, 𝛼′) ℛ𝑡

−→ (0, . . . , 0, 𝛼 + 𝛽, 𝛼′ + 𝛽) .

Since this probability does not depend on the choice of 𝛼 and 𝛼′, this differential can
obviously be iterated several times to cover more rounds.

For instance, when 𝑡 = 12 and 𝑛 = 61, the 101 rounds of GMiMC can be decomposed
into 8 blocks of 𝑡 = 12 rounds, followed by 5 rounds. We then get a differential of the form

(0, . . . , 0, 𝛼, 𝛼′) −→ (0, 0, 0, 0, 0, 𝛾, 𝛾′, 0, 0, 0, 0, 0)

over the full cipher with probability at least

𝑃 = (2−61)8 = 2−488

since the characteristic over the last 5 rounds has probability 1. This leads to a differential
distinguisher over the full permutation with complexity 𝑃 −1 = 2488 which is much lower
than the size of the full codebook (2732).

It is worth noticing that 𝑃 is a lower bound on the probability of the 101-round
differential since we considered pairs following some specific characteristics by fixing the
forms of some differences at intermediate rounds. Obviously, some additional input pairs
may lead to an output difference of the same form but not to these specific intermediate
differences.

Improving the complexity of the distinguisher with structures. The data complexity of
the previous distinguisher can be improved by using structures of inputs. Here, a structure is
a set of 22𝑛 inputs of the form 𝒮𝑐 = {(𝑐1, . . . , 𝑐𝑡−2, 𝑥, 𝑦) | 𝑥, 𝑦 ∈ F𝑝}. Clearly, the difference
between any two elements in the same structure has the form (0, . . . , 0, 𝛼, 𝛼′). It follows
that, from any structure, we can construct 24𝑛−1 pairs of inputs whose difference conforms
with the differential. Then, the number of structures required to obtain 𝑃 −1 = 28𝑛 pairs
with an appropriate difference is

28𝑛−4𝑛+1 = 24𝑛+1,

leading to an overall data complexity of 26𝑛+1 = 2367. The time complexity is equal to the
data complexity here, since the distinguisher consists in identifying the output pairs which
coincide on all output words except the two in the middle. This obviously does not require
computing all pairs of elements in each structure, but only to store the values 𝜋(𝑥), 𝑥 ∈ 𝒮𝑐

according to their first coordinates.
This differential distinguisher does not lead to an attack with complexity below the

target security level. However, this must clearly be considered as an unsuitable property
since its complexity is much lower than what we expect for a randomly chosen permutation
on a set of size 2732.

It is worth noticing that, if we restrict ourselves to distinguishers with complexity below
the target security level of 128 bits, then we can use at most 2128/22𝑛 = 26 structures.
Therefore, we can derive from these structures 26+4𝑛−1 = 2249 pairs of inputs conforming
with the differential. These pairs be can used to distinguish 4 blocks of 𝑡 rounds since the
differential has probability at least 2−244. Moreover, a valid pair propagates to a differential
of the form (𝛾, 𝛾′, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) with probability one over (𝑡− 2) rounds, and we
can extend it by a few more rounds by considering the number of state words that have
the same difference. After another 6 rounds, the pair has a differential of the form

(Δ, Δ, Δ, Δ, Δ, Δ, *, *, *, *, *, *),



A. Canteaut (ed.) 23

with probability one, where * is an unknown difference that we do not care about. This
differential form has a constraint of the size 5𝑛: the left-most six state words have an
identical difference. The number of queries to satisfy the same property for a randomly
chosen permutation is lower bounded by 25𝑛/2 ≈ 2152.5. This implies that we can distinguish
4𝑡 + (𝑡− 2) + (𝑡− 6) = 64 rounds of GMiMC from a randomly chosen permutation with
complexity less than 2128.

Improved distinguisher using three active words. If we consider a differential with
only two active words, the biggest structure we can build is of size 22𝑛, which limits
the advantage of using structures in reducing the cost of the distinguishers. Let us now
consider the following differential:

(0, . . . , 0, 𝛼, 𝛼′, 𝛼′′) ℛ𝑡−3

−→ (𝛼, 𝛼′, 𝛼′′, 0 . . . , 0)
ℛ−→ (𝛼′ + 𝛽, 𝛼′′ + 𝛽, 𝛽, . . . , 𝛽, 𝛼)
ℛ−→ (𝛼′′ + 𝛽 + 𝛽′, 𝛽 + 𝛽′, 𝛽 + 𝛽′, . . . , 𝛽 + 𝛽′, 𝛼 + 𝛽′, 𝛼′)
ℛ−→ (𝛽 + 𝛽′ + 𝛽′′, . . . , 𝛽 + 𝛽′ + 𝛽′′, 𝛼 + 𝛽′ + 𝛽′′, 𝛼′ + 𝛽 + 𝛽′′, 𝛼′′ + 𝛽 + 𝛽′) ,

where 𝛼
𝑆→ 𝛽, 𝛼′ + 𝛽

𝑆→ 𝛽′ and 𝛼′′ + 𝛽 + 𝛽′ 𝑆→ 𝛽′′ denote the Sbox transitions occurring at
Round (𝑡− 2), at Round (𝑡− 1) and at Round 𝑡.

As with the previous differential, if 𝛽 + 𝛽′ + 𝛽′′ = 0, which occurs with probability 2−𝑛

on average, we have:

(0, . . . , 0, 𝛼, 𝛼′, 𝛼′′) ℛ𝑡

−→ (0, . . . , 0, 𝛼− 𝛽, 𝛼′ + 𝛽 + 𝛽′′, 𝛼′′ − 𝛽′′) .

Again, the probability of this transition is independent of the values of 𝛼, 𝛼′ and 𝛼′′, so it
can be iterated with probability 2−𝑛.

For this differential, we can build structures of size 23𝑛. This will allow us to consider
around 26𝑛 pairs with the required input differential, so we can expect to be able to iterate
the characteristic for 6𝑡 rounds. The total distinguisher will cover 6𝑡 + (𝑡− 3) rounds. As
for the previous one, we can add 4 more rounds, generating an output state with 8 words
having the same difference with a cost of 23𝑛, compared to a cost of 27𝑛/2 for a random
permutation. For GMiMC with 𝑡 = 12, this allows to distinguish 85 rounds with a cost of
23𝑛. By repeating this procedure 2𝑛 times, we can expect 𝑡 more rounds to be covered,
and distinguish the whole permutation with 101 rounds with a complexity of 25𝑛 = 2320

and having 9 words with a zero difference (as we do not need to add the final four rounds).
Let us point out that using four instead of three words would not improve the number

of rounds attacked on GMiMC-128-d, as the cost of one structure is already the same as
the cost of obtaining the 8 non-zero differences in the output for a random permutation.
Nevertheless, in the case of the GMiMC variant 256-b with 𝑡 = 14, if we use a similar
differential with four active words, we can distinguish up to 8𝑡 + (𝑡 − 4) = 122 rounds
while finding 10 words with no difference and with a complexity of about 24𝑛 = 2500.

Optimality of this differential. To determine whether further improvements of these
differentials are possible, we have searched for other differential characteristics with a
Mixed-Integer Linear Programming (MILP) model.

Note that our model only lower-bounds the probability of a fixed differential as done
for the previously described characteristics and does not take the details of the initial
structure or truncation of the output difference into account.

Previously proposed models for differential characteristics usually represent either each
state word [MWGP11] or each bit [AST+17] with a binary decision variable. Neither is
well-suited for GMiMC over prime fields: with a word-wise model, we cannot identify



24 Report on the security of STARK-friendly hash functions

whether two differences are identical and will thus find many invalid characteristics; with
a bit-wise model, the model would be unpractically large due to the large state size and
number of rounds. We thus model each state word with an integer variable 𝑥 ∈ [−ℓ, ℓ],
and addition modulo 𝑞 simply as 𝑥 + 𝑦 = 𝑧. The variable 𝑥 in this relation does not define
the value of the difference (except for 𝑥 = 0), but only captures properties such as equality
and additive relations. The bound ℓ limits the number of distinct difference values that
can be modelled and also defines the helper constant 𝑀 = 2ℓ.

If 𝑥 and 𝑦 are the input and output of an S-box, we only require that 𝑥 = 0 ⇔ 𝑦 = 0.
One direction 𝑥 = 0 ⇒ 𝑦 = 0 of this implication can be encoded using binary helper
variables 𝜋𝑖:

1− 𝜋1 𝑀 ≤ 𝑥 ≤ −1 + 𝜋2 𝑀, 0− 𝜋3 𝑀 ≤ 𝑦 ≤ 0 + 𝜋4 𝑀,
∑︀4

𝑖=1 𝜋𝑖 ≤ 2 .

Each Sbox is associated with a cost 𝑐 ∈ {0, 1} (𝑥 ̸= 0 ⇒ 𝑐 = 1) as well as a gain 𝑔 ∈ {0, 1},
where 𝑔 = 1 means the output difference 𝑦 ̸= 0 is arbitrary and thus the transition does
not reduce the success probability. We identify these cases by requiring that |𝑦| is larger
than any possible sum of defined differences 𝑧, bounded by 2 𝑧 (with helper variable 𝑔𝑧),
including the permutation’s input, output, and S-box outputs in the previous 𝑟 rounds:

−𝑐 𝑀 ≤ 𝑥 ≤ 𝑐 𝑀, 𝑦 ≥ 2 𝑧 − (1−𝑔𝑧)𝑀, 𝑦 ≥ −2 𝑧 − (1−𝑔𝑧)𝑀,
∑︀

𝑧 𝑔𝑧 ≥ 𝑔 (2𝑡+𝑟).

Finally, we require nontriviality, with helper variables 𝜋𝑥, 𝜋′
𝑥 for each input 𝑥:

1− 𝜋𝑥𝑀 ≤ 𝑥 ≤ −1 + 𝜋′
𝑥𝑀,

∑︀
𝑥 𝜋𝑥 + 𝜋′

𝑥 ≤ 2𝑡− 1 .

The minimization objective is the sum of the cost minus the gain of each Sbox. This
corresponds to − log𝑞 𝑃 , where 𝑃 is the approximate probability of the differential with
fixed input and output difference.

The structured characteristics we describe above yield a cost of 𝑘 + 1 when the number
of rounds is between 𝑘 𝑡 − 1 and (𝑘 + 1) 𝑡 − 2. We used the MILP model to look at all
possible characteristics for up to 3 𝑡 rounds. The obtained bounds match our solutions
except for 𝑘 𝑡 − 1 and 𝑘 𝑡 rounds, where a small and general modification improves the
cost to 𝑘 instead of 𝑘 + 1. We conclude that the previously described characteristic is
essentially optimal with respect to the defined search space.

4.5 Algebraically controlled differential attacks

In this section we show how to use algebraic techniques in order to efficiently find inputs
that satisfy a given differential characteristic. The basic idea is to represent the initial
state of the permutation symbolically by assigning variables to some of its branches, while
the remaining branches are assigned constant values. We then compute the permutation
symbolically for several rounds. Namely, for each round, we derive a polynomial expression
for each branch of the internal state in terms of the allocated variables.

We repeat this process starting from two initial states (representing two inputs to
the permutation), perhaps assigning them different variables. We can now represent the
difference between the internal states at each round in these two computations using
polynomial expressions in the allocated variables. In particular, each differential transition
of the given differential characteristic (whose probability is smaller than one) is expressed
as a polynomial equation in the variables. Collecting the equations for all differential
transitions, we obtain a system of polynomial equations, whose solution immediately gives
two inputs to the permutation that satisfy the differential characteristic. For this approach
to be useful, the equation system has to be efficiently solvable, which generally implies
that we cannot allocate too many variables and need to minimize the algebraic degree of
the polynomial equations.

We start by demonstrating this approach with a basic example.



A. Canteaut (ed.) 25

Satisfying 3𝑡 − 2 rounds. We show how to efficiently satisfy 3𝑡−2 rounds of the iterative
differential characteristic of Section 4.4,

(0, . . . , 0, 𝜇0, 𝜇′
0) ℛ𝑡−2

−→ (𝜇0, 𝜇′
0, 0 . . . , 0)

ℛ−→ (𝜇′
0 + 𝜇1, 𝜇1, . . . , 𝜇1, 𝜇0)

ℛ−→ (𝜇1 + 𝜇′
1, . . . , 𝜇1 + 𝜇′

1, 𝜇0 + 𝜇′
1, 𝜇′

0 + 𝜇1),

where we require that 𝜇1 + 𝜇′
1 = 0.

Consider an initial state of the permutation of the form

𝑋0 = (𝛼1, . . . , 𝛼𝑡−2, 𝑥, 𝑓(𝑥)),

where the 𝛼𝑖 are constants in F𝑞, 𝑥 is a variable and the function 𝑓(𝑥) is described in
Section 4.2.3 (see (1)). Then, as described in Section 4.2.3, the internal state at Round (𝑡−2)
is described as

𝑋𝑡−2 = (𝑥 +
∑︀𝑡−2

𝑖=1 𝛽𝑖, 𝑓(𝑥) +
∑︀𝑡−2

𝑖=1 𝛽𝑖, 𝛾1, . . . , 𝛾𝑡−2),

while the state at Round (2𝑡− 2) is described as

𝑋2𝑡−2 = (𝑥′ − (𝑥′ + RC𝑡−1)3 + 𝛿1,−𝑥′ + 𝛿1, 𝛿2, . . . , 𝛿𝑡),

where 𝑥′ = 𝑥+
∑︀𝑡−2

𝑖=1 𝛽𝑖. Starting from Round (2𝑡−2), the algebraic degree of the branches
generally grows by a multiplicative factor of 3 per round, namely, the algebraic degree of
Round (2𝑡− 2 + 𝑟) is at most 3𝑟+1.

Next, consider another initial state of the permutation of the form

𝑌0 = (𝛼1, . . . , 𝛼𝑡−2, 𝑦, 𝑓(𝑦)),

where the initial constants 𝛼𝑖 are identical to those of 𝑋0. Note that the initial difference
between the states is of the form

Δ0 = 𝑋0 − 𝑌0 = (0, . . . , 0, 𝜇0(𝑥, 𝑦), 𝜇′
0(𝑥, 𝑦)).

Then, the state 𝑌2𝑡−2 after Round (2𝑡− 2) is described as

𝑌2𝑡−2 = (𝑦′ − (𝑦′ + RC𝑡−1)3 + 𝛿1,−𝑦′ + 𝛿2, 𝛿3, . . . , 𝛿𝑡).

Therefore, the choice of the initial states of the two inputs, ensures that (2𝑡− 2) rounds of
the differential characteristic are satisfied with probability one. At Round 2𝑡, we have

Δ2𝑡 = 𝑋2𝑡 − 𝑌2𝑡 =
(𝜇2(𝑥, 𝑦) + 𝜇′

2(𝑥, 𝑦), . . . , 𝜇2(𝑥, 𝑦) + 𝜇′
2(𝑥, 𝑦), 𝜇1(𝑥, 𝑦) + 𝜇′

2(𝑥, 𝑦), 𝜇′
1(𝑥, 𝑦) + 𝜇2(𝑥, 𝑦)),

and we require 𝜇2(𝑥, 𝑦) + 𝜇′
2(𝑥, 𝑦) = 0, which is a polynomial equation of degree 32+1 = 27

in the variables 𝑥, 𝑦. Since we have 2 variables and only one equation in F𝑞, we can set one
of the variables to an arbitrary constant and solve a univariate polynomial equation in the
other variable. We expect one solution on average, which gives an input pair that satisfies
the differential characteristic for 2𝑡 rounds. Since the next (𝑡− 2) rounds are satisfied with
probability one, we can satisfy 3𝑡− 2 rounds at the cost of solving a univariate polynomial
equation over F𝑞 of degree 27.



26 Report on the security of STARK-friendly hash functions

Satisfying 4𝑡−2 rounds in an inside-out setting. In an inside-out setting, the differential
characteristic can be extended from (3𝑡− 2) rounds to (4𝑡− 2) rounds algebraically, by
adding 𝑡 rounds before the initial state. Indeed, since the initial state is described by
polynomials of degree 3, the state at Round (−2) can be described by polynomials of
degree 27:

Δ−2 = 𝑋−2 − 𝑌−2 =
(𝜇−1(𝑥, 𝑦) + 𝜇′

−1(𝑥, 𝑦), . . . , 𝜇−1(𝑥, 𝑦) + 𝜇′
−1(𝑥, 𝑦), 𝜆1(𝑥, 𝑦) + 𝜇′

−1(𝑥, 𝑦), 𝜆′
1(𝑥, 𝑦) + 𝜇−1(𝑥, 𝑦)).

Therefore, we require 𝜇−1(𝑥, 𝑦) + 𝜇′
−1(𝑥, 𝑦) = 0, in addition to 𝜇2(𝑥, 𝑦) + 𝜇′

2(𝑥, 𝑦) = 0.
This defines a system of two equations of degree 27 in two variables. Any solution with
𝑥 ̸= 𝑦 defines a pair of states that satisfies a differential characteristic from Round (−𝑡) to
Round (3𝑡− 2), because Rounds (−𝑡) to (−2) are satisfied with probability 1.

In order to solve the system, we first divide each equation by (𝑦 − 𝑥) to eliminate
trivial solutions with 𝑥 = 𝑦. Then we compute a Gröbner basis of the resulting system.
Using the MAGMA software, this can be done in less than one minute on a standard PC.
Moreover, this can be extended to a distinguisher on 66 rounds by considering a truncated
difference in the input and output. We give an example in Figure 7.

load(’GMiMC_erf.sage’) # https://starkware.co/hash-challenge/
S128d_40 = GMiMCParams(field=F61, r=8, c=4, num_rounds=66)

x = vector(F61, [
2136504846259473744, 1283314153929910666, 1750372136437271205,
1867169825994287512, 821961362109051955, 1707450857617152361,
552784820823413051, 484096115705447781, 887825053625051502,
527122293700370254, 925898050459212322, 1348485354687005037])

y = vector(F61, [
605957700298844821, 2195497570512456035, 1242887650166759306,
1453303426557585887, 2164561375454964764, 333859287618218787,
1549736142184771152, 1358466196860349803, 121930483920884288,
647266587342612993, 425900737534652142, 848488041762444857])

print ("Input diff : "+" ".join(["{:20}".format(u.lift()) for u in y-x]))
x = erf_feistel_permutation(x, S128d_40)
y = erf_feistel_permutation(y, S128d_40)
print ("Output diff: "+" ".join(["{:20}".format(u.lift()) for u in y-x]))

Figure 7: Sagemath code verifying a pair of inputs with a distinguishing property on 66
rounds of GMiMC-128-d: Δ0[10] = Δ0[11] and Δ65[0] = Δ65[1]

Satisfying 4𝑡 − 4 rounds. If we want to use the differential in a collision attack, we must
preserve the value of some initial state words, and we cannot use the inside-out technique.
We describe an alternative technique, using a modified differential with four active state



A. Canteaut (ed.) 27

words:

(0, . . . , 0, 𝜇0, 𝜇′
0, 𝜇′′

0 , 𝜇′′′
0 )

ℛ𝑡−4

−→ (𝜇0, 𝜇′
0, 𝜇′′

0 , 𝜇′′′
0 , 0 . . . , 0)

ℛ−→ (𝜇′
0 + 𝜇1, 𝜇′′

0 + 𝜇1, 𝜇′′′
0 + 𝜇1, 𝜇1, . . . , 𝜇1, 𝜇0)

ℛ−→ (𝜇′′
0 + 𝜇1 + 𝜇′

1, 𝜇′′′
0 + 𝜇1 + 𝜇′

1, 𝜇1 + 𝜇′
1, . . . , 𝜇1 + 𝜇′

1, 𝜇0 + 𝜇′
1, 𝜇′

0 + 𝜇1)
ℛ−→ (𝜇′′′

0 + 𝜇1 + 𝜇′
1 + 𝜇′′

1 , 𝜇1 + 𝜇′
1 + 𝜇′′

1 , . . . , 𝜇1 + 𝜇′
1 + 𝜇′′

1 , 𝜇0 + 𝜇′
1 + 𝜇′′

1 , 𝜇′
0 + 𝜇1 + 𝜇′′

1 , 𝜇′′
0 + 𝜇1 + 𝜇′

1)
ℛ−→ (𝜇1, . . . , 𝜇1, 𝜇0 + 𝜇1 − 𝜇1, 𝜇′

0 + 𝜇1 − 𝜇′
1, 𝜇′′

0 + 𝜇1 − 𝜇′′
1 , 𝜇′′′

0 + 𝜇1 − 𝜇′′′
1 )

with 𝜇1 = 𝜇1 + 𝜇′
1 + 𝜇′′

1 + 𝜇′′′
1 .

As previously, we require that 𝜇1 = 0. This happens with probability 2−𝑛, and results in
an iterative truncated characteristic (0, . . . , 0, *, *, *, *) ℛ𝑡

−→ (0, . . . , 0, *, *, *, *).
As in the previous attack, we build an initial state with special relations in order to

control the first 𝑡 rounds with probability one:

𝑋0 = (𝛼1, . . . , 𝛼𝑡−4, 𝑥, 𝑓(𝑥), 𝑦, 𝑓(𝑦)).

This ensures that the state at Round (2𝑡− 4) is of the form:

𝑋2𝑡−4 = (𝑥′ − (𝑥′ + RC𝑡−1)3 + 𝛿1,−𝑥′ + 𝛿2, 𝑦′ − (𝑦′ + RC𝑡−1)3 + 𝛿3,−𝑦′ + 𝛿4, 𝛿5, . . . , 𝛿𝑡).

Instead of considering two different states with this shape (with four unknown in total),
we will consider one variable state, and one fixed state with (𝑥, 𝑦) = (0, 0). When we
consider the state at Round (2𝑡), we have

Δ2𝑡 = 𝑋2𝑡 −𝑋2𝑡(0, 0) =
(𝜇2, . . . , 𝜇2, 𝜇1 + 𝜇2 − 𝜇2, 𝜇′

1 + 𝜇2 − 𝜇′
2, 𝜇′′

1 + 𝜇2 − 𝜇′′
2 , 𝜇′′′

1 + 𝜇2 − 𝜇′′′
2 )

where (𝜇1, 𝜇′
1, 𝜇′′

1 , 𝜇′′′
1 ) are polynomials of degree 3, 1, 3, and 1 respectively (as seen in

𝑋2𝑡−4), and (𝜇2, 𝜇′
2, 𝜇′′

2 , 𝜇′′′
2 ) are polynomials of degree 9, 27, 81, and 243, with 𝜇2 =

𝜇2 + 𝜇′
2 + 𝜇′′

2 + 𝜇′′′
2 . All polynomials have variables 𝑥 and 𝑥′, and 𝑋2𝑡(0, 0) is a vector

of constants. We now require 𝜇2(𝑥, 𝑥′) = 0, and we can simplify the state using this
assumption:

𝑋2𝑡 = 𝑋2𝑡(0, 0) + (0, . . . , 0, 𝜇1 − 𝜇2, 𝜇′
1 − 𝜇′

2, 𝜇′′
1 − 𝜇′′

2 , 𝜇′′′
1 + 𝜇2 + 𝜇′

2 + 𝜇′′
2).

We obtain an expression of degree (0, . . . , 0, 9, 27, 81, 81).
When we focus on Round (3𝑡), we can now express the condition of the differential as

a polynomial of degree 729. Therefore, we have a system of two equations of degree 243
and 729 in two variables. This can be solved efficiently by computing the resultant of the
two bivariate polynomials, and finding its roots (the resultant is a univariate polynomial
of degree 19683). Finding the roots is the bottleneck, with an asymptotic complexity of
roughly 𝑑1.5 field operations for a polynomial of degree 𝑑 [KU08].

Any solution with (𝑥, 𝑦) ̸= (0, 0) defines a state such that the pair (𝑋(𝑥, 𝑦), 𝑋(0, 0))
satisfies the differential characteristic up to Round (4𝑡− 4), because Rounds (4𝑡) to (4𝑡− 4)
are satisfied with probability one.

Extending the differentials. All these attacks can be extended probabilistically by finding
about 𝑞 different input pairs that satisfy the differential characteristic (each pair is found
by choosing different constants 𝛼𝑖 in the initial state). With high probability, one of these
input pairs will also satisfy the next differential transitions, and follow the characteristic
for 𝑡 more rounds.



28 Report on the security of STARK-friendly hash functions

4.6 Reduced-round collision attacks

We can build collisions on a reduced number of rounds by using the same ideas as for the
previous structural or algebraic differential distinguishers. The additional constraint that
we have now compared to distinguishers is that any value that needs to be chosen must be
assigned to the rate part, i.e. the 8 left-most words in GMiMC-128-d, and the capacity
part, i.e. the 4 right-most words in GMiMC-128-d, will be fixed to a known value we
cannot choose.

Building collisions with structures. We won’t use the 3-word differential but the 2-word
one, as already using the full 2𝑛 structure from the 2-word one would imply a complexity
equivalent to that of a generic collision attack. Instead of having 𝑡 = 12 free rounds at the
beginning, we will have only 8, due to the 4 words reserved for the capacity. With a cost of
2𝑟·𝑛 we can then go through 𝑟 · 𝑡 rounds maintaining the same differential. Finally, we can
freely add (𝑡− 2) rounds that will keep the differences at the rate part, and, consequently,
can be finally cancelled:

(0, . . . , 0, 𝛼, 𝛼′, 0, 0, 0, 0) ℛ𝑡−6

−→ (𝛼, 𝛼′, 0 . . . , 0)
ℛ𝑟·𝑡

−→ (𝛽, 𝛽′, 0 . . . , 0) .

This differential has a probability of 2−𝑟·𝑡, and would allow to build collisions up to 3𝑡− 6
rounds, so for 30 rounds for GMiMC. If we use structures we can improve this: if we build
a structure of size 2𝑥, with the cost of the structure we can verify a probability up to 2−2𝑥.
If we choose structures of size 23𝑛/2, we can consider 𝑟 = 3. This would provide collisions
for 4𝑡− 6 rounds. For GMiMC-128-d this implies collisions on 42 rounds with a cost of
292, and for GMiMC-256 it implies collisions on 50 rounds with a complexity of 2187.

Building collisions with algebraically controlled techniques. In order to use the alge-
braically controller techniques in a collision attack, we must not use any difference in
the inner part of the sponge. As we said, in the case of GMiMC-128-d, we have 𝑐 = 4,
therefore, we start from a state

𝑋0 = (𝛼1, . . . , 𝛼4, 𝑥, 𝑓(𝑥), 𝑦, 𝑓(𝑦), 𝛼9, . . . , 𝛼12)

and we have a characteristic over 4𝑡 − 4 − 𝑐 = 40 rounds. The system can be solved
algebraically, by computing the resultant of the two bivariate polynomials, and finding its
roots. In MAGMA, this takes a few minutes using less than 3GB of RAM. We give an
example of conforming pair in Figure 8, where all the 𝛼 constants have been set to zero.

This attack can be extended to 𝑡 more rounds probabilistically, with a complexity of
𝑞 · 196831.5 ≈ 283.

4.7 Summary

Table 5 summarizes all results we have obtained on GMiMC with the considered parameters.
It includes a practical collision attack covering 40 (out of 101) rounds of GMiMC. For the
full version (i.e. with the 101 rounds), all exhibited weaknesses are distinguishers for the
inner permutation. The existence of such distinguishers does not imply the existence of a
concrete collision or preimage attack on the corresponding sponge. However, since some of
these distinguishers have a complexity which is much lower than the claimed security level,
they clearly invalidate the security arguments deduced from the indifferentiability proof
of the sponge construction. Moreover, the existence of several distinguishers, of different
types, which are more powerful than expected by the designers, gives very little confidence
in the security of GMiMC with these parameters. It is worth noticing that a better choice
of the parameters may increase the security.



A. Canteaut (ed.) 29

load(’GMiMC_erf.sage’) # https://starkware.co/hash-challenge/
S128d_40 = GMiMCParams(field=F61, r=8, c=4, num_rounds=40)

x = vector(F61, [0, 0, 0, 0, 0, 1265014881285225376,
0, 1323963633845726391, 0, 0, 0, 0])

y = vector(F61, [0, 0, 0, 0, 1687869230625042828, 1678073603247747657,
1246244071391540901, 1919915214622971772, 0, 0, 0, 0])

print ("Input diff : "+" ".join(["{:20}".format(u.lift()) for u in y-x]))
x = erf_feistel_permutation(x, S128d_40)
y = erf_feistel_permutation(y, S128d_40)
print ("Output diff: "+" ".join(["{:20}".format(u.lift()) for u in y-x]))

Figure 8: Sagemath code verifying a pair of inputs following the characteristic for a
40-round collision attack of GMiMC-128-d.

Table 5: Distinguishers on the GMiMC permutation and attacks on the corresponding
sponge hash functions. The variant aiming at 128-bit security operates on 𝑡 = 12 elements
in F𝑞 with 𝑞 = 261 + 20 × 232 + 1. The variant aiming at 256-bit security operates on
𝑡 = 14 elements in F𝑞 with 𝑞 = 2125 + 266× 264 + 1.
Primitive Rounds Attack
(security)

Type Rounds Cost Sect.
GMiMC 101 permutation integral distinguisher 70 261 4.2.3
(128 bits) ZS distinguisher 102 248 4.2.5

ZS distinguisher 128 2122 4.2.4
diff. distinguisher 64 2123 4.4
diff. distinguisher 66 practical 4.5

hash function collisions 40 practical 4.6
collisions 42 292 4.6
collisions 52 283 4.6

GMiMC 186 permutation integral distinguisher 116 2125 4.2.3
(256 bits) ZS distinguisher 186 2108 4.2.5

ZS distinguisher 206 2125 4.2.4
ZS distinguisher 218 2250 4.2.4

hash function collisions 50 2187 4.6

5 HadesMiMC (Starkad and Poseidon)

5.1 Description

HadesMiMC is a family of permutations described by Grassi et al. in [GLR+19] which
follows a new construction for block ciphers called HADES. The aim of the HADES
construction is to decrease the number of Sboxes used in a Substitution-Permutation
Network with a guarantee that the cipher resists all known attacks, including differential
and linear cryptanalysis and algebraic attacks. Reducing the number of Sboxes is especially
important in many applications, for instance when the cipher needs to be protected against
side-channel attacks [GGNS13] or if it is combined with an FHE-scheme [ARS+15]. This
was traditionally achieved by using a partial substitution-layer, i.e., an Sbox layer which



30 Report on the security of STARK-friendly hash functions

does not operate on the whole internal state. However, several attacks on this type
of constructions, e.g. [BDD+15, DLMW15, DEM16, RST18] show that it is much more
difficult to estimate the security level of these constructions than that of classical SPNs.
The basic principle of the HADES construction is then to combine both aspects: the
inner rounds in the cipher have a partial Sbox layer in order to increase the resistance
to algebraic attacks at a reduced implementation cost, while the outer rounds consist of
traditional SPN rounds, with a full Sbox layer. The resistance against statistical attacks is
then analyzed by removing the inner rounds. Indeed, the cipher without the inner rounds
is a classical SPN and its resistance to differential and linear cryptanalysis can be estimated
with well-studied methods. On the other hand, the resistance to algebraic attacks, e.g.
the evolution of the algebraic degree over the cipher, involves the inner rounds.

�

S

S

S

S

S

S

S

L �

S

S

S

S

S

S

S

L

S

� L

S

� L

S

� L

S

S

S

S

S

S

S

� L

S

S

S

S

S

S

S

� L

Rf/2 full rounds RP partial rounds Rf/2 full rounds

Figure 9: The HADES construction with 𝑡 = 6.

HadesMiMC [GLR+19, Section 3] is then a keyed permutation following the HADES
construction dedicated to MPC applications or to STARK-proof systems, where the Sbox
is defined by the cube mapping over a finite field and the linear layer 𝐿 corresponds to a
(𝑡 × 𝑡)-MDS matrix. Two concrete instantiations of HadesMiMC are then detailed by
Grassi et al. in [GKK+19], namely:

∙ Starkad operates on 𝑡 elements in a binary field with odd dimension (which
guarantees that the cube mapping is bijective);

∙ Poseidon operates on 𝑡 elements in a prime field F𝑝 with 𝑝 mod 3 ̸= 1.

For the parameters we focus on, i.e., 𝑡 = 12 and 𝑞 ≃ 264, the number of rounds is equal
to:

∙ for Starkad, 𝑅𝑓 = 8 full rounds, and 𝑅𝑝 = 43 partial rounds, with 𝑞 = 263.

∙ for Poseidon, 𝑅𝑓 = 8 full rounds, and 𝑅𝑝 = 40 partial rounds, with 𝑞 = 𝑝 =
261 + 20× 232 + 1.

It is worth noticing that, since the cube mapping has differential uniformity 2 over F2𝑛

(𝑛 odd) and over F𝑝, 𝑅𝑓 = 6 rounds are enough to guarantee that there is no differential
characteristic over the full rounds with probability higher than 2−𝑡𝑛.

The following sections describe two types of attacks against HadesMiMC, which
both exploit the propagation of affine subspaces over the partial rounds. The first one
is an integral distinguisher covering all rounds except the first two rounds for most sets
of parameters. The second one is a preimage attack on the full function which applies
when the MDS matrix defining the linear layer has, up to multiplication by a scalar, a
low multiplicative order. It is worth noticing that, while the designers of HadesMiMC
do not mention any requirements on this MDS matrix, they provide several suggestions.



A. Canteaut (ed.) 31

Algorithm 2 HadesMiMC with block-size 𝑡, 2𝑅𝑓 full rounds and 𝑅𝑃 partial rounds.
Input: (𝑥1, . . . , 𝑥𝑡) ∈ F𝑡

for 𝑟 from 0 to (𝑅𝑓 /2− 1) do
for 𝑖 from 1 to 𝑡 do

𝑦𝑖 ← (𝑥𝑖 + RC𝑟,𝑖)3

end for
(𝑥1, . . . , 𝑥𝑡)← 𝐿(𝑦1, . . . , 𝑦𝑡)

end for
for 𝑟 from 0 to (𝑅𝑃 − 1) do

𝑦𝑡 ← (𝑥𝑡 + RC′
𝑟,𝑡)3

(𝑥1, . . . , 𝑥𝑡)← 𝐿(𝑥1 . . . , 𝑥𝑡−1, 𝑦𝑡)
end for
for 𝑟 from 0 to (𝑅𝑓 /2− 1) do

for 𝑖 from 1 to 𝑡 do
𝑦𝑖 ← (𝑥𝑖 + RC′′

𝑟,𝑖)3

end for
(𝑥1, . . . , 𝑥𝑡)← 𝐿(𝑦1, . . . , 𝑦𝑡)

end for
Output: (𝑥1, . . . , 𝑥𝑡)

For Starkad and Poseidon, Cauchy matrices are used [GKK+19]. In Appendix A,
we identify weak instances from this class of matrices. Alternatively, the HadesMiMC
authors propose [GLR+19, Appendix B] the use of a matrix of the form 𝐴×𝐵−1 where
both 𝐴 and 𝐵 are Vandermonde matrices with generating elements 𝑎𝑖 and 𝑏𝑖. In this
case, if 𝑎𝑖 = 𝑏𝑖 + 𝑟 for some 𝑟 ∈ F𝑞, then the resulting MDS matrix will be an involution
for F𝑞 of characteristic two [SDMO12]. Similarly, in characteristic 𝑝 ̸= 2, one obtains an
involution whenever 𝑎𝑖 = −𝑏𝑖.

5.2 Integral distinguishers

The main threats for all variants of MiMC seem to be attacks of an algebraic nature
exploiting the fact that the only nonlinear operation is the cube mapping over a finite
field, which has a low degree compared to the size of the field. This is why most of these
permutations require a large number of rounds compared to usual ciphers like the AES.

Multivariate polynomial over F𝑞. In HadesMiMC, the number of rounds has been
chosen by the designers in such a way that, when each coordinate of the output is expressed
as a polynomial in 𝑡 variables in

F𝑞[𝑥1, . . . , 𝑥𝑡]/ (𝑥𝑞
1 − 𝑥1, . . . , 𝑥𝑞

𝑡 − 𝑥𝑡) ,

i.e., as ∑︁
(𝑖1,...𝑖𝑡)

𝑐𝑖1,...𝑖𝑡𝑥
𝑖1
1 𝑥𝑖2

2 . . . 𝑥𝑖𝑡
𝑡 with 𝑐𝑖1,...𝑖𝑡 ∈ F𝑞

then the degree of this polynomial in each input is close to (𝑞 − 1), which is the behaviour
expected for a randomly chosen permutation. Assuming that the degree in each variable
grows as 3𝑟 for 𝑟 rounds (which is an upper bound), then 39 rounds (resp. 40 rounds) are
enough for Poseidon (resp. for Starkad) to achieve maximal degree in each variable.
Then, as analyzed by the designers in [GLR+19, Lemma 1], once we get a polynomial
of degree (𝑞 − 1) in each input, ⌈log3(𝑡)⌉ rounds are enough to get a polynomial of total
degree (𝑞 − 1)𝑡.



32 Report on the security of STARK-friendly hash functions

It is worth noticing that, among the parameters proposed in the StarkWare challenges,
the variants operating over a field F𝑞 with log2 𝑞 ≃ 256 (namely variants 128-b and 128-e)
do not satisfy this requirement since they have at most 96 rounds implying that the degree
of the coordinates in each input is at most 2152 which is much smaller than the field size.
Exploiting this property in an attack with data complexity less than the claimed security
level is still an open problem. However, the fact that the degree of the permutation is
much lower than expected for an ideal permutation does not seem to be a suitable property.
Also, this analysis assumes that the degree over the partial rounds increases exactly as
over the full rounds, which seems to be a strong hypothesis.

An integral property. Our idea to improve upon the trivial bound above by a few partial
rounds is to choose a specific subspace of inputs. Indeed, we are going to construct a
one-dimensional subspace 𝑉 such that 𝑡− 1 partial rounds will map any coset 𝑉 + 𝑣0 onto
a coset of another one-dimensional subspace 𝑊 . Adding at most ⌊log3(𝑞 − 2)⌋ rounds
(either full or partial), ensures that the conditions of Corollary 1 are satisfied and thus the
outputs sum to zero.

𝑉 + 𝑣0
ℛ𝑡−1

𝑝−→ 𝑊 + 𝑤0
deg<𝑞−1−→ zero sum.

Let us denote by 𝑉 a linear subspace of internal states after the Sbox layer of the
last of the first 𝑅𝑓 /2 full rounds (see Figure 10). Then, this subspace leads to an affine
subspace at the input of the first partial round, which is a coset of 𝐿(𝑉 ). The following
lemma guarantees the existence of a nontrivial vector space 𝐿(𝑉 ) such that any coset of
𝐿(𝑉 ) is mapped to a coset of 𝑊 = 𝐿𝑡(𝑉 ) after 𝑡− 1 partial rounds.

Lemma 1. Let 𝐹 : F𝑡
𝑞 → F𝑡

𝑞 denote a permutation obtained from 𝑟 ≥ 1 partial HadesMiMC
rounds instantiated with linear layer 𝐿. If 𝐿 has multiplicative order ℎ, then there exists
a vector space 𝑉 with dim 𝑉 ≥ 𝑡−min{ℎ, 𝑟} such that 𝐹 (𝑥 + 𝑉 ) ⊆ 𝐹 (𝑥) + 𝐿(𝑉 ) for all
𝑥 ∈ F𝑡

𝑞.

Proof. Let 𝑉 = ⟨𝛿𝑡, 𝐿𝑇 (𝛿𝑡), . . . , (𝐿𝑇 )𝑟−1(𝛿𝑡)⟩⊥ where 𝛿𝑡 = (0, . . . , 0, 1). Clearly, dim 𝑉
satisfies the desired lower bound. It suffices to show that for all 𝑥 ∈ F𝑡

𝑞 and 𝑣 ∈ 𝑉 ,
𝐹 (𝑥 + 𝑣) = 𝐹 (𝑥) + 𝑣. Let 𝐹 = 𝑅𝑟 ∘ · · · ∘ 𝑅1. Since the last coordinate of any 𝑣 in 𝑉
is zero, i.e. 𝑣 ⊥ 𝛿𝑡, the image of 𝑥 + 𝑉 by the partial Sbox layer is a coset of 𝑉 . It
follows that 𝑅1(𝑥 + 𝑣) = 𝑅1(𝑥) + 𝐿(𝑣). Similarly, for Round 𝑖 = 2, . . . , 𝑟, it holds that
𝑅𝑖(𝑥𝑖 + 𝐿𝑖−1(𝑣)) = 𝑅𝑖(𝑥𝑖) + 𝐿𝑖(𝑣) if 𝐿𝑖−1(𝑣) ⊥ 𝛿𝑡 or equivalently 𝑣 ⊥ (𝐿⊤)𝑖−1(𝛿𝑡).

Let us consider any coordinate 𝑦 of the output of the permutation after adding 𝑟
additional (partial or full) rounds. When 𝑧0 varies in 𝑉 , these output words correspond to
the images by the additional rounds of the elements 𝑧1 in a coset of 𝑊 = 𝐿𝑡(𝑉 ), which we
denote by 𝛾 + 𝑊 (see Figure 10). As the polynomial corresponding to the 𝑟 additional
rounds has degree at most 3𝑟, it then follows using Corollary 1 that∑︁

𝑧0∈𝑉

𝑦(𝑧0) =
∑︁

𝑧1∈𝛾+𝑊

𝑦(𝑧1) =
∑︁
𝑥∈F𝑞

𝑃 (𝑥) = 0 ,

as long as 𝑟 is at most ⌊log3(𝑞 − 2)⌋.
Thus, in total this covers (𝑡 − 1) + ⌊log3(𝑞 − 2)⌋ rounds, starting after the first full

rounds. For most sets of concrete parameters, this actually exceeds the recommended
number of rounds in the forward direction for both Poseidon and Starkad. Furthermore,
Lemma 1 implies that if the linear layer 𝐿 has multiplicative order less than 𝑡− 1, then
the distinguisher covers an arbitrary number of partial rounds.



A. Canteaut (ed.) 33

S

S

S

S

S

S

S

� L

S

S

S

S

S

S

S

� L

S

� L

S

� L

S

S

S

S

S

S

S

� L

S

S

S

S

S

S

S

� L

S

S

S

S

S

S

S

� L

S

S

S

S

S

S

S

� L

U V W+γ

y′ z′0 = x′u z0 z1 = γ + xw y
< log3(q − 2) full- or partial-roundst− 1 partial rounds

Figure 10: Zero-sum distinguisher against Poseidon and Starkad covering (2 + 4) full
rounds and all partial rounds.

Zero-sum distinguishers over F𝑞. By extending the above-mentioned approach in the
backwards direction, we can construct a zero-sum distinguisher with a (slightly) extended
number of rounds as depicted on Figure 10. The problem is that, contrary to the case of
GMiMC, the inverse round function in HadesMiMC is very different from the round
function itself, and it has a much higher degree. Indeed, the inverse of the cube mapping
over F𝑞 is a power function 𝑆−1 : 𝑥 ↦→ 𝑥𝑠 whose exponent is given by

𝑠 = 2𝑞 − 1
3 .

By using classical bounds on the degree, we cannot guarantee a degree lower than (𝑞 − 2)
for more than one single round backwards.

However, 𝑉 being one-dimensional allows to overcome one additional layer of Sboxes,
and thus one additional round. Namely, as 𝑉 is a one-dimensional space there exists a
vector 𝑣 = (𝑣1, . . . , 𝑣𝑡) ∈ F𝑡

𝑞 such that

𝑉 = {(𝑥 𝑣1, 𝑥 𝑣2, . . . , 𝑥 𝑣𝑡) | 𝑥 ∈ F𝑞}.

The image of 𝑉 under the inverse of the full Sbox layer consists of all the vectors in F𝑡
𝑞

of the form (︀
(𝑥 𝑣1)1/3, . . . , (𝑥 𝑣𝑡)1/3)︀ = 𝑥1/3 (︀𝑣1/3

1 , . . . , 𝑣
1/3
𝑡

)︀
.

As a consequence, this image is again a one-dimensional vector space having the same
form, namely 𝑈 = {𝑥′ (𝑢1, . . . , 𝑢𝑡) | 𝑥′ ∈ F𝑞} where 𝑢𝑖 = 𝑣

1/3
𝑖 for all 0 ≤ 𝑖 < 𝑡. It is worth

noticing that this particular structure does not propagate over more rounds because of the
addition of a round constant. Then, any coordinate at the input of the previous round
𝑦′ is the image of an element 𝑧′

0 = 𝑥′𝑢 in 𝑈 by an affine layer, followed by the inverse of
Sbox, i.e., by 𝑥 ↦→ 𝑥1/3 (see Figure 10). We can then consider this mapping as a function
of 𝑥′ ∈ F𝑞, and express it as a polynomial 𝑄 with coefficients in F𝑞. Since the degree of
this polynomial is the degree of the inverse Sbox, it does not exceed (𝑞 − 2). Using the
notation from Figure 10, we then have∑︁

𝑧0∈𝑉

𝑦′(𝑧0) =
∑︁

𝑧′
0∈𝑈

𝑦′(𝑧′
0) =

∑︁
𝑥′∈F𝑞

𝑄(𝑥) = 0 .

For most sets of proposed parameters, this provides a zero-sum distinguisher with data
complexity 𝑞 on HadesMiMC for all but the two initial rounds, i.e. for 2 + 4 full rounds
(2 at the beginning and 4 at the end), and all partial rounds, as detailed in Table 6. Again,
for instantiations of HadesMiMC with a linear layer of multiplicative order less than
𝑡− 1, the distinguisher covers an arbitrary number of partial rounds.



34 Report on the security of STARK-friendly hash functions

Table 6: Number of rounds of HadesMiMC covered by the zero-sum distinguisher of
complexity 𝑞.

Poseidon Starkad
security 𝑡 log2 𝑞 proposed nb of rounds log2 𝑞 proposed nb of rounds
level 𝑅𝑓 , 𝑅𝑃 of the ZS 𝑅𝑓 , 𝑅𝑃 of the ZS
128 bits 12 61 8, 40 2+4, 45 63 8, 43 2+4, 46

4 125 8, 81 2+4, 77 125 8, 85 2+4, 77
12 125 8, 83 2+4, 85 125 8, 86 2+4, 85
3 253 8, 83 2+4, 157 255 8, 85 2+4, 158
12 253 8, 85 2+4, 165 255 8, 88 2+4, 166

256 bits 8 125 8, 82 2+4, 81 125 8, 86 2+4, 81
14 125 8, 83 2+4, 87 125 8, 83 2+4, 87

Multivariate polynomial over F2 for Starkad. In the case of Starkad, the permuta-
tion can also be seen as a permutation over another algebraic structure, namely K𝑚𝑡 where
K is a subfield of F2𝑛 . The simplest setting obviously corresponds to K = F2. Then, each
bit of the output of the permutation can be expressed as a Boolean function of 𝑛𝑡 variables,
whose algebraic normal form is a polynomial in

F2[𝑥1, . . . , 𝑥𝑛𝑡]/
(︀
𝑥2

1 − 𝑥1, . . . , 𝑥2
𝑛𝑡 − 𝑥𝑛𝑡

)︀
.

For instance, in the same setting as before for finding a zero-sum distinguisher, we
consider internal states in an F2𝑛-affine space 𝑉 , which can also be seen as an affine
space in F𝑛𝑡

2 . Then, any mapping from 𝑉 into F2𝑛 can be expressed both as a univariate
polynomial 𝑃 in F2𝑛 [𝑥] and as a collection of 𝑛 multivariate polynomials 𝑝1, . . . , 𝑝𝑛 in
F2[𝑥1, . . . , 𝑥𝑛]/

(︀
𝑥2

1 − 𝑥1, . . . , 𝑥2
𝑛 − 𝑥𝑛

)︀
(i.e., algebraic normal forms of 𝑛 Boolean functions).

There is a well-known relation between the degree of the univariate polynomial 𝑃 and the
degree of the multivariate polynomials 𝑝𝑖 (see e.g. [Can16, Prop. 2.5]): for each 𝑖,

deg 𝑝𝑖 = max{𝑤𝑡(𝑢) : 0 ≤ 𝑢 < 2𝑛 and 𝑐𝑢 ̸= 0}

where 𝑃 (𝑥) =
∑︀2𝑛−1

𝑢=0 𝑐𝑢𝑥𝑢 and 𝑤𝑡(𝑢) denotes the number of ones in the binary decompo-
sition of the integer 𝑢. It then follows that the cube mapping has binary degree 2 (since
3 = 21 + 20) and its inverse has degree (𝑛 + 1)/2 since

2𝑛+1 − 1
3 =

(𝑛−1)/2∑︁
𝑖=0

22𝑖

see e.g. [Nyb94, Prop. 5]. It implies that the binary degree of 𝑟 rounds in the forward
direction cannot exceed the number of binary digits of an exponent 𝑢 which belongs to
{0, . . . , 3𝑟}, i.e.,

⌊log2(3𝑟)⌋ = ⌊𝑟 log2(3)⌋ .

We then deduce that 39 rounds in the forward direction have degree at most (𝑛 − 1)
which guarantees that, when the inputs vary in a subspace of dimension 𝑛 or more, the
corresponding output bits sum to zero.

But we are able to extend the previous zero-sum distinguisher by one round backwards
by exploiting the binary degree. Indeed, the full rounds correspond to a classical SPN with
an Sbox 𝜎 of binary degree 𝑑 = 𝑛+1

2 , and it is well-known that the binary degree of an
SPN does not grow with the number of rounds 𝑟 as 𝑑𝑟, but a bit slower. This property has
been used on several hash functions (e.g. [BCD11]). We can then apply the best known



A. Canteaut (ed.) 35

bound on the degree of an SPN, which is Theorem 3.2 in [BC13]. In our case, this theorem
states that the degree of two rounds backwards is upper-bounded by

𝑛𝑡− 𝑛𝑡− 𝑑

𝛾(𝜎) (4)

where 𝛾(𝜎) is a parameter which depends on the Sbox only, namely

𝛾(𝜎) = max
1≤𝑖≤𝑛−1

𝑛− 𝑖

𝑛− 𝛿𝑖(𝜎)

and 𝛿𝑖(𝜎) denotes the maximal binary degree of the product of any 𝑖 (or fewer) Boolean
coordinates of 𝜎. It appears that, in the specific case of 𝑆−1, the inverse of the cube
mapping, the value of 𝛾(𝑆−1) is much smaller that the degree of 𝑆−1. This comes from
the fact that the binary degree of 𝑆 is only 2. Therefore, by applying the relation between
𝛿𝑘(𝑆−1) and 𝛿ℓ(𝑆) given in [BC13, Theorem 3.1], we obtain that

𝛿𝑛−2ℓ−1(𝑆−1) < 𝑛− ℓ

for any 1 ≤ ℓ ≤ 5. Based on these bounds, we deduce that, for 𝑡 = 12 and log2 𝑞 = 63,

𝛾(𝑆−1) ≤ 𝑛− 2
6

as detailed in Table 7.

Table 7: Computing the value of 𝛾(𝑆−1) in [BC13, Theorem 3.1] for 𝑆−1 : 𝑥 ↦→ 𝑥1/3 over
F2𝑛 with 𝑛 = 63.

𝑖 1 2 . . . 31 . . . 47 . . . 55
bound on 𝛿𝑖(𝑆−1) 𝑛+1

2 𝑛− 6 𝑛− 5 𝑛− 4 𝑛− 3
bound on 𝑛−𝑖

𝑛−𝛿𝑖(𝑆−1) 2 𝑛−2
6

𝑛−31
5

𝑛−47
4

𝑛−55
3

𝑖 . . . 𝑛− 4 𝑛− 3 𝑛− 2 𝑛− 1
bound on 𝛿𝑖(𝑆−1) 𝑛− 2 𝑛− 2 𝑛− 1 𝑛− 1

bound on 𝑛−𝑖
𝑛−𝛿𝑖(𝑆−1) 2 3

2 2 1

By applying (4) with 𝛾(𝜎) = 𝑛−2
6 , we deduce that two full rounds backwards in

Starkad have degree at most 684. It is worth noticing that the same bound applied
to 3 rounds backwards leads to an upper-bound equal to 748, which is very close to the
block-size.

However, since the degree of two rounds backwards is strictly less than 𝑛(𝑡− 1), we can
exhibit a zero-sum distinguisher on Starkad covering (3 + 4) full rounds and 35 partial
rounds, as depicted on Figure 11. We here choose the internal states after the Sbox layer
of the third round of the permutation in the linear space of F𝑡

2𝑛 of dimension (𝑡− 1)

𝑉 = {(𝑥1, . . . , 𝑥𝑡−1, 0), 𝑥𝑖 ∈ F2𝑛} .

Then, the forward direction corresponds to the linear layer of the second round, followed
by 39 rounds, which have binary degree at most (𝑛 − 1) in the bits of each 𝑥𝑖. This
implies that the output bits of the permutation sum to zero when all inner states in 𝑉 are
considered.

In the backward direction, the structure of 𝑉 is obviously preserved by the inverse
of the Sbox layer. Thus, the output of the second round of the permutation is an affine



36 Report on the security of STARK-friendly hash functions

S

S

S

S

S

S

S

� L

S

S

S

S

S

S

S

� L

S

S

S

S

S

S

S

� L

S

� L

S

� L

S

S

S

S

S

S

S

� L

S

S

S

S

S

S

S

� L

S

S

S

S

S

S

S

� L

S

S

S

S

S

S

S

� L
V ′ V

p of binary degree ≤ (n− 1)(t− 1)q of binary degree ≤ 684

Figure 11: Zero-sum distinguisher against Starkad with (3 + 4) full rounds and 35 partial
rounds based on the binary degree.

subspace 𝑉 ′ ⊂ F𝑛𝑡
2 of dimension 𝑛(𝑡 − 1) = 693. The input bits are then the images of

the elements of this subspace by two rounds backwards, which corresponds to a Boolean
function of degree at most 684. The sum of any input bit when the intermediate states
vary in 𝑉 then corresponds to the value of a derivative of order 693 of a function of degree
at most 684. This sum is then always equal to zero. However, extending the integral
property by one round backwards with this technique has a huge cost since the complexity
of this distinguisher is now 2𝑛(𝑡−1) = 2693 which is much higher than the target security
level.

Univariate degree. An important observation is that we analyzed here the algebraic
properties of the coordinates of the permutation seen as multivariate polynomials only. But
the whole permutation can also be expressed as a univariate polynomial with coefficients
in F𝑞𝑡 where the vector space F𝑡

𝑞 is identified with the field F𝑞𝑡 . This is, for instance, the
situation of the original MiMC cipher whose Sbox alphabet corresponds to the whole block-
size. But determining the degree of this univariate polynomial in the case of HadesMiMC
remains an open question.

5.3 Finding preimages by linearization of the partial rounds

This section shows that, when the linear layer in HadesMiMC has a low multiplicative
order, the propagation of linear subspaces through all partial rounds leads to a much more
powerful attack. Indeed, we now show that the existence of perfect linear approximations
over the partial rounds of HadesMiMC, as detailed in Lemma 2, can be used to setup
a simplified system of equations for finding preimages, leading to a full-round preimage
attack.

Lemma 2. Let 𝐹 : F𝑡
𝑞 → F𝑡

𝑞 denote a permutation obtained from 𝑟 ≥ 1 partial HadesMiMC
rounds instantiated with linear layer 𝐿 and round constants 𝑐1, . . . , 𝑐𝑟. Let 𝑉 ⊂ F𝑡

𝑞 be
the vector space 𝑉 = ⟨𝐿(𝛿𝑡), 𝐿2(𝛿𝑡), . . . , 𝐿𝑟(𝛿𝑡)⟩⊥, where 𝛿𝑡 = (0, . . . , 0, 1). Then, for all
𝑥 ∈ F𝑡

𝑞 and 𝑣 ∈ 𝑉 ,

𝑣 · 𝐹 (𝑥) = 𝑣 · 𝐿𝑟(𝑥) +
𝑟∑︁

𝑖=1
𝑣 · 𝐿𝑟+1−𝑖(𝑐𝑖),

where 𝑢 · 𝑣 denotes the usual scalar product in F𝑡
𝑞. Furthermore, if 𝐿 has multiplicative

order ℎ, then dim 𝑉 ≥ 𝑡−min{ℎ, 𝑟}.

Proof. Let 𝐹𝑟 = 𝑅𝑟 ∘𝑅𝑟−1 ∘ · · · ∘𝑅1, where 𝑅𝑖 denotes the 𝑖th partial HadesMiMC round,
namely 𝑅𝑖(𝑥) = 𝐿 ∘ 𝑆(𝑥 + 𝑐𝑖). We proceed by induction on 𝑟. For 𝑟 = 1, we have, for any
𝑣 and 𝑥,

𝑣 ·𝑅1(𝑥) = 𝐿𝑇 (𝑣) · 𝑆(𝑥 + 𝑐1) = 𝐿𝑇 (𝑣) · (𝑥 + 𝑐1) = 𝑣 · 𝐿(𝑥) + 𝑣 · 𝐿(𝑐1)



A. Canteaut (ed.) 37

if the last coordinate of 𝐿𝑇 (𝑣) is zero, or equivalently 𝐿𝑇 (𝑣) · 𝛿𝑡 = 𝑣 · 𝐿(𝛿𝑡) = 0.
Let us now consider Round 𝑟 and 𝑣 ∈ ⟨𝐿(𝛿𝑡), 𝐿2(𝛿𝑡), . . . , 𝐿𝑟(𝛿𝑡)⟩⊥. For any 𝑦 ∈ F𝑡

𝑞, we
have

𝑣 ·𝑅𝑟(𝑦) = 𝐿𝑇 (𝑣) · 𝑆(𝑦 + 𝑐𝑟) = 𝐿𝑇 (𝑣) · (𝑦 + 𝑐𝑟)
since 𝐿𝑇 (𝑣) · 𝛿𝑡 = 𝑣 · 𝐿(𝛿𝑡) = 0. Letting 𝑦 = 𝐹𝑟−1(𝑥), it follows that

𝑣 ·𝐹𝑟(𝑥) = 𝐿𝑇 (𝑣) ·𝐹𝑟−1(𝑥) + 𝐿𝑇 (𝑣) · 𝑐𝑟 = 𝐿𝑇 (𝑣) ·𝐿𝑟−1(𝑥) +
𝑟−1∑︁
𝑖=1

𝐿𝑇 (𝑣) ·𝐿𝑟−𝑖(𝑐𝑖) + 𝐿𝑡(𝑣) · 𝑐𝑟

where the last equality is deduced from the induction hypothesis using that 𝐿𝑇 (𝑣) belongs
to ⟨𝐿(𝛿𝑡), . . . , 𝐿𝑟−1(𝛿𝑡)⟩⊥. Finally, it is easy to see that the dimension of 𝑉 ⊥ can be upper
bounded as dim 𝑉 ⊥ ≤ min{ℎ, 𝑟, 𝑡}. Hence, dim 𝑉 ≥ 𝑡−min{ℎ, 𝑟}.

Suppose that 𝐿 is such that the vector space 𝑉 from Lemma 2 is of dimension 𝑑. It will
be shown that, if 𝑑 is sufficiently large, such an instantiation of HadesMiMC is vulnerable
to preimage attacks for some choices of the rate and capacity parameters of the sponge
construction. In particular, when the MDS matrix 𝐿 in an involution, we obtain 𝑑 = 𝑡− 2.

By Lemma 2, there exists a matrix 𝑈1 ∈ F𝑑×𝑡
𝑞 such that 𝑈1𝐹 (𝑥) = 𝑈1(𝐿𝑟(𝑥) + 𝑎)

for a known constant 𝑎. Indeed, let the rows of 𝑈1 be a basis for 𝑉 . Furthermore, let
𝑈2 ∈ F(𝑡−𝑑)×𝑡

𝑞 be a matrix with row space complementary to the row space of 𝑈1. For
each 𝑥, it holds that

𝑈1𝑦 = 𝑈1(𝐿𝑟(𝑥) +
∑︀𝑟

𝑖=1 𝐿𝑟+1−𝑖(𝑐𝑖))
𝑈2𝑦 = 𝑈2𝐹 (𝑥).

(5)

Consider a HadesMiMC permutation in a sponge construction with rate 𝑘 and capacity
𝑐 = 𝑡−𝑘. Computing preimages of a one-block message (𝑦1, . . . , 𝑦𝑘) ∈ F𝑘

𝑞 then corresponds
to solving the system of equations [𝐹 (𝑥‖IV)]𝑖 = 𝑦𝑖, 𝑖 = 1, . . . , 𝑘 in the unknowns 𝑥1, . . . , 𝑥𝑘.

The idea of the attack is simple: for each guess of 𝑈2𝐹 (𝑥) ∈ F𝑡−𝑑
𝑞 , replace the equations

for the partial rounds by the affine relations (5) and solve the resulting system of equations.
In order to ensure that the ideal generated by these equations is zero-dimensional, we
should have 𝑘 ≤ 𝑑, which always holds when 𝐿 is an involution, unless 𝑐 = 1. Note that
we focus on the case where the number of output elements is equal to the rate. This is
the most challenging setting. Indeed, if the output size is smaller than the rate – as in
some of the StarkWare challenges – then the preimage problem will typically have many
solutions. This allows the attacker to partially or completely avoid the guessing phase.
If further degrees of freedom remain after fixing 𝑈2𝐹 (𝑥) completely, one or more input
elements may be fixed to an arbitrary value.

Complexity analysis. We now show that the total time cost of the attack can be estimated
as

2𝛾 (2𝜋)−𝜔/2 𝑘2−𝜔/2 𝑒𝜔𝑘 3(𝜔𝑘+1)(𝑅𝐹 −1) 𝑞𝑡−𝑑.

Recall that the cost of solving the system of equations using Gröbner basis techniques
is dominated by two steps:

1. Computing a Gröbner basis with respect to a total degree term order such as the
degree reverse lexicographic (degrevlex) order. For standard reduction algorithms
such as Faugère’s F4 and F5, the time required for this step can be upper bounded
by [BFS15]

𝑇gb = 𝒪
(︂(︂

𝐷 + 𝑘

𝐷

)︂𝜔)︂
,

for 𝑘 variables and with 𝐷 an upper bound on the degree of the Gröbner basis
elements. Here, 𝜔 is the asymptotic exponent of the time complexity of matrix
multiplication.



38 Report on the security of STARK-friendly hash functions

2. Converting the degrevlex Gröbner basis to a Gröbner basis with respect to a lexi-
cographic order. For the FGLM algorithm, the cost of this step can be estimated
as [FGLM93]

𝑇fglm = 𝒪(𝑘 dim(F𝑞[𝑥1, . . . , 𝑥𝑘]/ℐ)𝜔),

where ℐ is the ideal corresponding the equations.

The time required to factor the univariate polynomials in the lexicographic Gröbner basis
can be assumed to be negligible. Hence, the time cost of the attack is dominated by
𝑞𝑡−𝑑 (𝑇gb + 𝑇fglm).

To set up a system of preimage equations for HadesMiMC, two diametrical approaches
may be considered. In the first strategy, one attempts to minimize the number of variables
by setting up a system of high-degree polynomials relating the input and output of the
permutation. In the second approach, intermediate variables are introduced at every round,
leading to a system of many low-degree equations. The latter strategy is usually preferred,
as it leads to a lower degree 𝐷. However, a routine calculation shows that reducing the
number of variables is more important for the present attack. Hence, we opt for the former
approach.

Clearly, the Sbox layer of the first round may be ignored in the analysis. Furthermore,
since the HadesMiMC design strategy states that the last linear layer can be omitted,
the last round could also be ignored. Nevertheless, this is not the case for Starkad and
Poseidon, so we do not take this into account in the analysis.

For each guess of 𝑈2𝐹 (𝑥), the outputs 𝑦1, . . . 𝑦𝑘 may be expressed directly as a polyno-
mial in the input (after the first Sbox layer) of degree 3𝑅𝐹 −1. In general, bounding 𝐷 is
highly nontrivial. However, for regular systems, Macaulay’s bound [BFS15, Mac02] yields

𝐷 ≤ (3𝑅𝐹 −1 − 1)𝑘 + 1.

Furthermore, small-scale experiments suggest that this bound is tight for this particular
system of equations. It is hard to obtain theoretical estimates of dim(F𝑞[𝑥1, . . . , 𝑥𝑘]/ℐ),
but small-scale experiments suggest that it scales as ∼ 3𝑘(𝑅𝐹 −1), which is consistent with
recent results obtained by Faugère and Perret [FP19]. Since the FGLM algorithm is able to
exploit sparse linear algebra methods [FM11], it is reasonable to assume that 𝑇fglm / 𝑇gb.

Suppose that 3𝑅𝐹 −1 ≫ 𝑘. Following the reasoning in [BFS15, S1.3], it holds that

𝑇gb ≤ 𝛾 𝑘 (𝐷 − 3𝑅𝐹 −1 + 1)
(︂

𝑘 + 𝐷 − 1
𝐷

)︂𝜔

/ 𝛾 𝑘2 3𝑅𝐹 −1
(︂

𝑘 + 𝐷 − 1
𝐷

)︂𝜔

.

In the above, the parameters 𝛾 and 𝜔 are such that the computational cost of computing
the row-reduced echelon form of an 𝑚×𝑛 matrix is 𝛾𝑚𝑛𝜔. Stirling’s approximation yields
the estimate

log
(︂

𝑘 + 𝐷 − 1
𝐷

)︂
= log

(︂
𝑘3𝑅𝐹 −1

𝑘

)︂
≈ 𝑘 + 𝑘(𝑅𝐹 − 1) log 3− log

√
2𝜋𝑘.

It follows that
𝑇gb / 𝛾 (2𝜋)−𝜔/2 𝑘2−𝜔/2 𝑒𝜔𝑘 3(𝜔𝑘+1)(𝑅𝐹 −1),

assuming that computing the reduced row-echelon form of an 𝑚× 𝑛 matrix takes time
𝛾𝑚𝑛𝜔. As discussed above, the total computational cost of the attack is then at most

2𝛾 (2𝜋)−𝜔/2 𝑘2−𝜔/2 𝑒𝜔𝑘 3(𝜔𝑘+1)(𝑅𝐹 −1) 𝑞𝑡−𝑑. (6)

Suppose that 2𝛾(2𝜋)−𝜔/2𝑘2−𝜔/2 < 3𝐶 for some absolute constant 𝐶. For the total
cost (6) to be below the security level 𝑞min{𝑘,𝑐/2}, it suffices that

log3 𝐶 + 𝑅𝐹 + 𝜔𝑘(log3 𝑒 + 𝑅𝐹 − 1) + (𝑡− 𝑑) log3 𝑞 ≤ min{𝑘, 𝑐/2} log3 𝑞.



A. Canteaut (ed.) 39

Assuming 𝑞 ≥ 3𝜔𝑅𝐹 we deduce the following lower bound for 𝑘:

𝑘 ≥ (𝑡− 𝑑) log3 𝑞 + 𝑅𝐹 + log3 𝐶

log3 𝑞 − 𝜔 (𝑅𝐹 + log3 𝑒− 1) .

Since 𝑐 = 𝑡− 𝑘 we also obtain

log3 𝐶 + 𝑅𝐹 + 𝑘[𝜔(log3 𝑒 + 𝑅𝐹 − 1) + (log3 𝑞)/2] ≤ (𝑑− 𝑡/2) log3 𝑞.

From this, we deduce the upper bound

𝑘 ≤ (𝑑− 𝑡/2) log3 𝑞 −𝑅𝐹 − log3 𝐶

1/2 log3 𝑞 + 𝜔(𝑅𝐹 + log3 𝑒− 1) .

We conclude that the preimage attack improves over the 𝑞min{𝑐/2,𝑘} security level whenever

(𝑡− 𝑑) log3 𝑞 + 𝑅𝐹 + log3 𝐶

log3 𝑞 − 𝜔 (𝑅𝐹 + log3 𝑒− 1) ≤ 𝑘 ≤ (𝑑− 𝑡/2) log3 𝑞 −𝑅𝐹 − log3 𝐶

1/2 log3 𝑞 + 𝜔(𝑅𝐹 + log3 𝑒− 1) ,

where 𝐶 is a constant close to one. If 𝑘 ≤ 20, one can take 𝐶 = 3.

For example, for an involutive 𝐿, 𝑅𝐹 = 8 and an arbitrary number of partial rounds,
Figure 12a shows for which choices of 𝑞 and 𝑡 an improvement over the generic security of
the sponge construction is obtained. The insecure instances are shaded in gray. Note that
this domain corresponds to a conservative estimate for the cost of row-echelon reduction,
i.e. 𝜔 = 3 and 𝛾 = 3/2. The cost itself is shown in Figure 12b. We stress that these figures
correspond to the most challenging case, i.e. assuming that the hash output is of length 𝑘
and no shorter.

100 150 200 2508

10

12

14

16

18

log2 𝑞

𝑡

𝜔 = 2
𝜔 = 3

(a) Minimum 𝑡 such that the cost is better than
generic for some choice of 𝑘.

1 𝑡/3 2𝑡/3 𝑡
0

log2 𝑞

4 log2 𝑞

𝑘

lo
g 2

(c
os

t)

𝑞min{𝑘,𝑐/2}

log2 𝑞 ≈ 128
log2 𝑞 ≈ 256
log2 𝑞 ≈ 512

(b) Cost for different values of the rate 𝑘 with
𝑡 = 12 and 𝜔 = 3.

Figure 12: Cost analysis of the preimage attack on HadesMiMC with an involutive linear
layer and 𝑅𝐹 = 8. The shaded areas correspond to parameters for which the attack
improves over the 𝑞min{𝑘,𝑐/2} security level.

For the concrete Starkad and Poseidon instances specified in Table 1, we obtain
better-than-generic attacks on some variants assuming that the hash output has length
𝑐 ≤ 𝑘. Indeed, provided that 𝑐 ≤ 𝑑/2 = 𝑡/2− 1, a sufficiently large number of preimages
is likely to exist so that it is no longer necessary to guess 𝑈2𝐹 (𝑥). In addition, input
variables may be fixed until only 𝑐 free variables remain. This leads to a computational



40 Report on the security of STARK-friendly hash functions

cost of 2𝛾 (2𝜋)−𝜔/2 𝑐2−𝜔/2 𝑒𝜔𝑐 3(𝜔𝑐+1)(𝑅𝐹 −1). Note that, for these instances, we do not
obtain relevant preimage attacks when the output size exceeds 𝑡/2− 1.

Table 8: Overview of the computational cost (measured in F𝑞 operations) of the preimage
attack on different instances of Poseidon and Starkad, assuming an involutive linear
layer. These estimates assume that the hash output has length 𝑐. For the variants 128-a,
128-b and 128-d, the attack does not improve over the generic security level of the sponge.

Variant 𝑐 Computational cost
𝜔 ≈ 2.8 𝜔 = 3

128-c 2 280.0 284.3

128-e 1 244.2 246.3

256-a 4 2150.9 2160.3

256-b 4 2150.9 2160.3

5.4 Remarks on algebraic distinguisher related to the CICO problem

The so-called Constrained-Input Constrained-Output (CICO) problem has been analyzed in
the “Report on Algebraic attacks” [FP19] which studies in detail the resistance of STARK-
friendly primitives to algebraic attacks. Here, we focus on the most interesting setting
of the CICO problem in our context, which corresponds to a preimage-attack scenario.
In this case, the number of fixed elements in the input and output of the permutation,
denoted by 𝑘 in [FP19], corresponds to the capacity of the sponge. Therefore, with the
parameters we consider, the number of fixed inputs is 𝑘 = 4.

The variant of the CICO problem corresponding to a preimage attack is then the
following (Algorithm 3), where 𝜋 denotes the inner permutation in the sponge construction.

Algorithm 3 CICO problem in a preimage-attack scenario.
Input: (𝑎1, . . . , 𝑎𝑘) and (𝑏1, . . . , 𝑏𝑘) ∈ F𝑘

𝑞

Find 𝑥1, . . . , 𝑥𝑡−𝑘 ∈ F𝑡−𝑘
𝑞 such that

𝜋(𝑎1, . . . , 𝑎𝑘, 𝑥1, . . . , 𝑥𝑡−𝑘) = (𝑏1, . . . , 𝑏𝑘, 𝑦1, . . . 𝑦𝑡−𝑘) for some 𝑦1, . . . 𝑦𝑡−𝑘 ∈ F𝑡−𝑘
𝑞

However, for the parameters we consider, 𝑡 > 2𝑘, which implies that the corresponding
algebraic system is underdefined. Since we need a single solution, we will instead consider
the following variant (Algorithm 4) with 𝑘 free variables only.

Algorithm 4 Alternative CICO problem in a preimage-attack scenario.
Input: (𝑎1, . . . , 𝑎𝑡−𝑘) ∈ F𝑡−𝑘

𝑞 and (𝑏1, . . . , 𝑏𝑘) ∈ F𝑘
𝑞

Find 𝑥1, . . . , 𝑥𝑘 ∈ F𝑘
𝑞 such that

𝜋(𝑎1, . . . , 𝑎𝑡−𝑘, 𝑥1, . . . , 𝑥𝑘) = (𝑏1, . . . , 𝑏𝑘, 𝑦1, . . . 𝑦𝑡−𝑘) for some 𝑦1, . . . 𝑦𝑡−𝑘 ∈ F𝑡−𝑘
𝑞

The main result in [FP19] concerning the complexity of the previous CICO problem
for Starkad and Poseidon is Theorem 10, stating that the degree of the univariate
polynomial of the lexicographical Gröbner basis of the algebraic system corresponding to
the CICO problem is

𝐷 = 3𝑘𝑅𝑓 +𝑅𝑃 −2𝑘+1 . (7)

Most notably, an important property is that this degree 𝐷 is independent from 𝑡, i.e. from
the block-size of the permutation which is considered.



A. Canteaut (ed.) 41

A first question raised by this result is the determination of the time complexity required
for solving the corresponding CICO problem. It is claimed in [FP19] that this complexity
is roughly 𝐷2, but that it would be reduced to 𝐷 when 𝑘 ≤ 2. However, it remains unclear
whether this complexity is not under-estimated and whether the first step in the algorithm
for solving the system (which involves the degree of regularity of the system) is not the
bottleneck in this specific case.

Moreover, a more general question arises on the cryptographic significance of the value
of the degree 𝐷 determined by (7). Actually, when 𝜋 is a randomly chosen permutation
of F𝑡

𝑞, do we expect that the degree of the univariate polynomial of the lexicographical
Gröbner basis of the algebraic system corresponding to the CICO problem is close to 𝑞𝑘?
In other words, we wonder whether the fact that 𝐷 < 𝑞𝑘 can be seen as a distinguishing
property for 𝜋 (even if the complexity for solving the system is not lower than the security
level). For instance, for the versions of Starkad and Poseidon aiming at 256-bit security,
which operate on 𝑡 = 14 elements in a field of size close to 2128, we get that 𝐷 ≃ 2170 for
𝑘 = 4. It seems that this property could be considered as a relevant distinguisher.

5.5 Summary

Table 9 summarizes the previous results on Poseidon and Starkad. None of the
distinguishers we have exhibited covers the total number of rounds proposed in the
StarkWare challenges. However, the security margin does not seem to be very high.
Especially, it appears that some instances of HadesMiMC, like the ones with an MDS
matrix having a low order, are weaker than expected in the sense that the partial rounds
can be bypassed by the attacker.

Table 9: Distinguishers on the HadesMiMC permutations and attacks on the corresponding
sponge hash functions. The variant aiming at 128-bit security operate on 𝑡 = 12 elements
in F𝑞 with 𝑞 = 261 + 20× 232 + 1 or 𝑞 = 263. The variant aiming at 256-bit security operate
on 𝑡 = 14 elements in F𝑞 with 𝑞 = 2125 + 266 × 264 + 1 or 𝑞 = 2125. The last attack (*)
only applies when the linear layer has a low multiplicative order.

Primitive Rounds Attack
(security)

Type Rounds Cost Sect.
Poseidon 8+40 permutation ZS distinguisher 6+45 261 5.2
(128 bits)
Starkad 8+43 permutation ZS distinguisher 6+46 261 5.2
(128 bits)

Poseidon 8+83 permutation ZS distinguisher 6+87 2125 5.2
(256 bits) hash function* preimages 8+any 2160 5.3
Starkad 8+83 permutation ZS distinguisher 6+87 2125 5.2
(256 bits) hash function* preimages 8+any 2160 5.3

6 Marvellous (Vision and Rescue)

6.1 Description

Marvellous includes two families of block ciphers proposed by Aly et al. [AAB+19]
very recently. These two ciphers share the same structure: they both follow the classical



42 Report on the security of STARK-friendly hash functions

SPN construction (with full Sbox layers) and operate on an internal state composed of
𝑡 elements in a large finite field F𝑞. Their linear layer consists of a 𝑡× 𝑡 MDS matrix which
guarantees a fast diffusion. However, the Sbox layers are very different in the two ciphers.

∙ In Vision, which is the primitive defined over a binary field F2𝑛 , the Sbox is
composed of the inversion in the field F2𝑛 , and of an affine transformation 𝐵 over
F𝑛

2 which is represented by a univariate polynomial of degree 4 over F2𝑛 , namely
𝐵(𝑋) = 𝐵0 + 𝐵1𝑋 + 𝐵2𝑋2 + 𝐵4𝑋4 with 𝐵𝑖 ∈ F2𝑛 . At each odd round4, the overall
Sbox consists of 𝑥 ↦→ 𝑥−1 followed by 𝐵, while at each even round, it consists of
𝑥 ↦→ 𝑥−1 followed by 𝐵−1.

∙ In Rescue, which is the primitive defined over a prime field F𝑝, the Sbox is derived
from the cube mapping in F𝑝, with 𝑝 mod 3 ̸= 1. At each odd round, the Sbox
corresponds to 𝑥 ↦→ 𝑥3, while at each even round, it corresponds to its inverse. A
specificity of Rescue is that this power function is not composed with an affine
layer (contrary to most ciphers, like the AES, which use an Sbox defined by a power
function).

It is worth noticing that all Sboxes used in these permutations, namely 𝑥3, 𝑥1/3 and
𝑥−1 have differential uniformity 2 (since 𝑞 = 2𝑛 with 𝑛 odd in Vision and 𝑞 = 𝑝 > 3
in Rescue), which is optimal [HRS99, Theorem 3]. Exactly as for the full rounds in
HadesMiMC, any differential characteristic over 6 rounds or more has probability lower
than 2−𝑡𝑛.

j+
𝑥−1

𝑥−1
...

𝐵−1

𝐵−1
... 𝐿- ---

?

RC𝑖

-

𝑥−1

𝑥−1
... -

𝐵

𝐵
... - 𝐿 - j+?

RC𝑖+1

-

Figure 13: Two rounds of Vision.

k+
𝑥1/3

𝑥1/3

... 𝐿- --
?

RC𝑖

-

𝑥3

𝑥3

... - 𝐿 - k+?
RC𝑖+1

-

Figure 14: Two rounds of Rescue.

For the parameters we focus on, i.e., 𝑡 = 12 and 𝑞 ≃ 264, the number of rounds of both
primitives is 𝑅 = 20, which means that the permutation contains ten even rounds and ten
odd rounds.

6.2 Degree of the permutation

Since the number of rounds in these two primitives is much smaller than for the previous
ones, we need to analyze carefully how the degree of Vision and Rescue increases with
the number of rounds.

4We assume that the rounds are numbered from 0 to (𝑅 − 1).



A. Canteaut (ed.) 43

Algorithm 5 Vision with block-size 𝑡 and 𝑅 rounds (with 𝑅 even).
Input: (𝑥0, . . . , 𝑥𝑡−1) ∈ F𝑡

2𝑛

for 𝑟 from 0 to (𝑅/2− 1) do
for 𝑖 from 0 to (𝑡− 1) do

𝑦𝑖 ← 𝐵−1 (︀(𝑥𝑖 + RC2𝑟,𝑖)−1)︀
end for
(𝑥0, . . . , 𝑥𝑡−1)← 𝐿(𝑦0, . . . , 𝑦𝑡−1)
for 𝑖 from 0 to (𝑡− 1) do

𝑦𝑖 ← 𝐵
(︀
(𝑥𝑖 + RC2𝑟+1,𝑖)−1)︀

end for
(𝑥0, . . . , 𝑥𝑡−1)← 𝐿(𝑦0, . . . , 𝑦𝑡−1)

end for
Output: (𝑥0, . . . , 𝑥𝑡−1)

Algorithm 6 Rescue with block-size 𝑡 and 𝑅 rounds (with 𝑅 even).
Input: (𝑥0, . . . , 𝑥𝑡−1) ∈ F𝑡

𝑝

for 𝑟 from 0 to (𝑅/2− 1) do
for 𝑖 from 0 to (𝑡− 1) do

𝑦𝑖 ← (𝑥𝑖 + RC2𝑟,𝑖)1/3

end for
(𝑥0, . . . , 𝑥𝑡−1)← 𝐿(𝑦0, . . . , 𝑦𝑡−1)
for 𝑖 from 0 to (𝑡− 1) do

𝑦𝑖 ← (𝑥𝑖 + RC2𝑟+1,𝑖)3

end for
(𝑥0, . . . , 𝑥𝑡−1)← 𝐿(𝑦0, . . . , 𝑦𝑡−1)

end for
Output: (𝑥0, . . . , 𝑥𝑡−1)

Vision. As previously detailed, any output coordinate in Vision can be seen as a
multivariate polynomial in 𝑡 variables over F2𝑛 or as a collection of 𝑛 binary polynomials
in 𝑛𝑡 variables. As a polynomial over F2𝑛 , the inverse mapping corresponds to 𝑥 ↦→ 𝑥2𝑛−2

and has then the highest possible degree for a permutation over F2𝑛 . This ensures that
the degree of output coordinates in each input variable is maximal after a single round.
Then, the MDS layer guarantees that different variables are multiplied together in the next
round, which implies that the maximal degree for the multivariate polynomial is reached
after a few rounds only.

As a binary function, i.e. as a permutation of F𝑛
2 , the inverse mapping has degree (𝑛−1)

(which is the number of ones in the binary representation of the integer (2𝑛 − 2)). This
corresponds to the binary degree of the two Sboxes (since the affine transformations 𝐵 and
𝐵−1 do not change the binary degree). If we apply the best known bound on the degree
of an SPN, which is Theorem 3.2 in [BC13], with the parameters we focus on, we get that
the degree of the algebraic normal form of any output bit of the permutation after two
rounds of Vision is upper bounded by 744. But the upper bound for three rounds reaches
the highest possible degree for a permutation of F𝑛𝑡

2 , which is 755 in our case. It is worth
noticing that, in both cases, i.e. over F2𝑛 and over F2, the degree increases even faster
than for other primitives based on the inverse mapping like the AES or Rijndael. For
instance, it has been proved in [BC13, Section V.B] that six rounds of Rijndael-256 are
not enough to achieve the maximal degree. The reason is that the diffusion in Rijndael
and in the AES is slower than in Vision because the MDS matrix in Rijndael operates
on the columns of the internal state, while it operates on the full state in Vision. In other



44 Report on the security of STARK-friendly hash functions

words, the so-called Superbox view [DR06] does not apply to Vision. This explains why
the growth of the binary degree in Vision is very fast.

Rescue. Studying the properties of the polynomial representation of the permutation
in the case of Rescue is important, for instance to ensure that the polynomial does not
simplify because of the interaction between the two Sboxes which are inverse to each
other. But this analysis is more difficult than for Vision, first because it involves both
the cube mapping and its inverse, 𝑥

2𝑝−1
3 . Also, since the field characteristic is very large,

the resulting polynomials are much denser than in the binary case (where many terms
cancel modulo 2). Nevertheless, we can study the degree of the coordinates of the output
of Rescue after two rounds (i.e., after one double-round). Let us activate a single input
coordinate and denote by 𝑥 the value of this input added to the corresponding coordinate of
RC0. Then, the coordinates of the output of the first round can be expressed as (𝜆𝑥1/3 + 𝜇)
where 𝜇 depends on the other inputs of the permutation. Therefore, after the 2nd-round
Sbox layer, each output coordinate can be expressed as

(𝜆𝑥1/3 + 𝜇)3

which is a univariate polynomial which contains only the monomials 𝑥1/3, 𝑥2/3, 𝑥 and a
constant term. The same property obviously holds for each coordinate of the output of the
second round. A simple observation now is that 𝑥2/3 corresponds to the monomial 𝑥𝑠 with

𝑠 = 2× 2𝑝− 1
3 = 𝑝− 1 + 𝑝 + 1

3 = 𝑝 + 1
3 mod (𝑝− 1) .

Therefore, 𝑥2/3 = 𝑥
𝑝+1

3 , implying that any coordinate of the output of the second round of
Rescue is a univariate polynomial in 𝑥 which involves monomials of degree 0, 1, 𝑝+1

3 and
2𝑝−1

3 . Its degree in 𝑥 is then equal to 2𝑝−1
3 , and is the same as the degree in 𝑥 of the first

round.
Consequently, if we express any coordinate of the output of the second round of Rescue

as a multivariate polynomial in

F𝑝[𝑥1, . . . , 𝑥𝑡]/ (𝑥𝑝
1 − 𝑥1, . . . , 𝑥𝑝

𝑡 − 𝑥𝑡) ,

then this polynomial involves all monomials of the form

𝑥
𝑎/3
𝑖 𝑥

𝑏/3
𝑗 𝑥

𝑐/3
𝑘 with 𝑎 + 𝑏 + 𝑐 ≤ 3 .

It follows that this polynomial has multivariate degree at most 3× 2𝑝−1
3 .

This shows that the degree in each input variable does not increase between the first
and the second round of Rescue. However, this does not apply when more rounds are
considered. Indeed, our simulations tend to show that, when 𝑘 inputs are activated, then
the output of the fourth round has degree 𝑘(𝑝 − 1), which would imply that mounting
an integral attack similar to the one against GMiMC is not possible on more than four
rounds.

6.3 Algebraic distinguisher on Rescue related to the CICO problem

The complexity of the CICO problem corresponding to the inner permutation of Rescue
has not been analyzed in the “Report on Algebraic Attacks” [FP19]. The situation in
Rescue is quite similar to the one in Poseidon with only 20 full rounds. The only
difference is that every even round uses 𝑥 ↦→ 𝑥1/3 as an Sbox, instead of 𝑥 ↦→ 𝑥3. However,
the relations derived for these rounds in the backward direction also have univariate
degree 3.



A. Canteaut (ed.) 45

Then, it would be interesting to have an analogous result for Rescue of Theorem 10
in [FP19]. Our intuition is that, for Rescue, the existence of a relation of univariate
degree 3 for every round could also be exploited. But it seems that, in this case, the degree
𝐷 would depend on 𝑡 in the case of Rescue, and not only on 𝑘 as for Poseidon.

6.4 Summary

We have not been able so far to exhibit any relevant weakness on Vision and on Rescue,
even if we tried to exploit some properties of their polynomial representation, or the
fact that the Sbox is a power mapping in Rescue. Our conclusion is then that Vision
cannot be easily broken with the state-of-the-art cryptanalytic techniques. The situation
is different for Rescue since only a few attacks apply to symmetric primitives defined over
a prime field and a much deeper and longer effort is needed to assess the security of this
new type of primitives.

7 Conclusions

Remark 1. The notion of symmetric primitives over a prime field has been introduced
too recently to be able to provide a rigorous assessment on its security. While decades
of research have produced efficient cryptanalytic tools and security criteria for primitives
defined over F2, we do not have the right tools to analyze primitives over F𝑝. As an
illustration of this situation, the notion of linear cryptanalysis and its variants is not
clearly established in odd characteristic (see e.g. [BSV07] for a first discussion). Also,
while higher-order differential attacks seemed to be relevant in the binary case only, we
have shown in this report that similar methods apply in any characteristic, and can even
be extended to multiplicative subgroups of F×

𝑝 .

Our preliminary analysis allowed us to establish a clear hierarchy between the security
levels offered by the five primitives we considered:

∙ GMiMC, with the parameters we focused on, suffers from many weaknesses which
were not expected by its designers. The existence of distinguishers with complexity
248 over the full permutation invalidates the security argument provided by the
indifferentiability proof of the sponge construction, which assumes that the inner
permutation behaves as a randomly chosen permutation. Even when the presented
weaknesses are distinguishers for the permutation only, we expect that related
properties can be exploited in the future for mounting attacks on the corresponding
hash function. Indeed, we have already exhibited a practical collision attack covering
40 rounds (out of 101) of the hash function. For all these reasons, our opinion is that
this version of GMiMC should not be used in practice.

∙ We did not find any distinguisher on the full versions of Starkad and Poseidon for
the parameters we focused on, but we exhibited some distinguishers on round-reduced
versions with a number of rounds which is not very far from the total number. Most
notably, we have shown that, in some specific cases (which do not include the version
proposed in the StarkWare challenge), all inner rounds of the permutation can be
bypassed by the attacker. This leads to a preimage attack on the full hash function
for some of the parameters proposed in the StarkWare challenges. In light of this
observation, the fact that the security evaluation of HadesMiMC against attacks of
algebraic nature often assumes that the partial rounds offer the same security as the
full rounds may appear as too optimistic a hypothesis. Therefore, our opinion is that
HadesMiMC may not have a large enough security margin to avoid the existence of
distinguishers with complexity below the claimed security level.



46 Report on the security of STARK-friendly hash functions

∙ We did not find any weakness on Rescue so far. For the reason mentioned in
Remark 1, it is clear that a fuller assessment of the security of Rescue requires a
much longer cryptanalytic effort, including the development of new tools for analyzing
symmetric primitives in odd characteristic. Also, it is important to note that the
security of Rescue with respect to attacks based on Gröbner bases and polynomial
system solving has not been studied in [FP19]. The results on Poseidon in [FP19]
raise several issues which must be addressed to estimate the resistance of Rescue to
this type of attacks. We therefore recommend to extend research into the algebraic
cryptanalysis and general symmetric cryptanalysis of this construction.

∙ Vision is by far the primitive we trust the most. We did not find any weakness on
Vision. This seems rather expected since Vision looks very much like the AES. We
then believe that it would be rather surprising that a concrete collision or preimage
attack on the sponge using Vision, with the parameters we focused on, would appear
in the next three years. If that were the case, then it would probably also have
consequences on the security of other primitives, like the AES.

In other words, for the parameters we studied, we see Vision and Rescue as the two
most secure options, for binary and prime fields respectively.

It is also worth noticing that the previously detailed hierarchy between the five SFH-
functions might be related to the number of nonlinear operations performed within the
function, as detailed in Table 10. Indeed, for the considered parameters, Vision is the
permutation with the largest number of Sboxes, and it also uses a stronger Sbox than
the other ones (in the sense that it has a much higher degree both in F2𝑛 and in F2). Its
counterpart over a prime field, Rescue, has the same number of Sboxes, but half of these
Sboxes correspond to 𝑥3 (which is weaker than 𝑥−1) and the other half to 𝑥1/3 (which
seems to offer a better security than 𝑥3 against some attacks). Finally, GMiMC is the
permutation with the smallest number of Sboxes, and all its Sboxes correspond to the
cube mapping. The fact that it offers the lowest security level among these five functions
is then not surprising.

Table 10: Number of Sboxes over F𝑞 for each permutation. The Sbox corresponds to the
cube mapping for GMiMC and HadesMiMC, to the inversion for Vision, to the cube
mapping or its inverse for Rescue.

Primitive Number of Sboxes For Variant 128-d
GMiMC 𝑅 101
Poseidon 𝑡𝑅𝑓 + 𝑅𝑃 136
Starkad 𝑡𝑅𝑓 + 𝑅𝑃 139
Vision and Rescue 𝑡𝑅 240

References

[AAB+19] Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe, and Alan
Szepieniec. Design of symmetric-key primitives for advanced cryptographic
protocols. Cryptology ePrint Archive, Report 2019/426, 2019. https://
eprint.iacr.org/2019/426.

[ACG+19] Martin R. Albrecht, Carlos Cid, Lorenzo Grassi, Dmitry Khovratovich, Rein-
hard Lüftenegger, Christian Rechberger, and Markus Schofnegger. Algebraic

https://eprint.iacr.org/2019/426
https://eprint.iacr.org/2019/426


A. Canteaut (ed.) 47

cryptanalysis of STARK-friendly designs: Application to MARVELlous and
MiMC. In Steven D. Galbraith and Shiho Moriai, editors, ASIACRYPT 2019,
Part III, volume 11923 of LNCS, pages 371–397. Springer, Heidelberg, De-
cember 2019.

[AD18] Tomer Ashur and Siemen Dhooghe. MARVELlous: a STARK-friendly family
of cryptographic primitives. Cryptology ePrint Archive, Report 2018/1098,
2018. https://eprint.iacr.org/2018/1098.

[AGP+19a] Martin R. Albrecht, Lorenzo Grassi, Léo Perrin, Sebastian Ramacher, Chris-
tian Rechberger, Dragos Rotaru, Arnab Roy, and Markus Schofnegger. Feistel
structures for MPC, and more. In Kazue Sako, Steve Schneider, and Peter
Y. A. Ryan, editors, ESORICS 2019, Part II, volume 11736 of LNCS, pages
151–171. Springer, Heidelberg, September 2019.

[AGP+19b] Martin R. Albrecht, Lorenzo Grassi, Leo Perrin, Sebastian Ramacher, Chris-
tian Rechberger, Dragos Rotaru, Arnab Roy, and Markus Schofnegger. Feistel
structures for MPC, and more. Cryptology ePrint Archive, Report 2019/397,
2019. https://eprint.iacr.org/2019/397.

[AGR+16] Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and
Tyge Tiessen. MiMC: Efficient encryption and cryptographic hashing with
minimal multiplicative complexity. In Jung Hee Cheon and Tsuyoshi Takagi,
editors, ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages 191–219.
Springer, Heidelberg, December 2016.

[AKK+10] Jean-Philippe Aumasson, Emilia Käsper, Lars R. Knudsen, Krystian Ma-
tusiewicz, Rune Steinsmo Ødeg̊ard, Thomas Peyrin, and Martin Schläffer.
Distinguishers for the compression function and output transformation of
Hamsi-256. In Ron Steinfeld and Philip Hawkes, editors, ACISP 10, volume
6168 of LNCS, pages 87–103. Springer, Heidelberg, July 2010.

[AM09] Jean-Philippe Aumasson and Willi Meier. Zero-sum distinguishers for reduced
Keccak-𝑓 and for the core functions of Luffa and Hamsi. Presented at the
rump session of Cryptographic Hardware and Embedded Systems – CHES
2009, 2009.

[AMPH14] Jean-Philippe Aumasson, Willi Meier, Raphael C.-W. Phan, and Luca Hen-
zen. The Hash Function BLAKE. Information Security and Cryptography.
Springer, 2014.

[AP11] Andrea Agnesse and Marco Pedicini. Cube attack in finite fields of higher
order. In Colin Boyd and Josef Pieprzyk, editors, AISC 20111, volume 116
of CRPIT, pages 9–14. Australian Computer Society, 2011.

[ARS+15] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen,
and Michael Zohner. Ciphers for MPC and FHE. In Elisabeth Oswald and
Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS,
pages 430–454. Springer, Heidelberg, April 2015.

[AST+17] Ahmed Abdelkhalek, Yu Sasaki, Yosuke Todo, Mohamed Tolba, and Amr M.
Youssef. MILP modeling for (large) s-boxes to optimize probability of differen-
tial characteristics. IACR Transactions on Symmetric Cryptology, 2017(4):99–
129, 2017.

https://eprint.iacr.org/2018/1098
https://eprint.iacr.org/2019/397


48 Report on the security of STARK-friendly hash functions

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable,
transparent, and post-quantum secure computational integrity. Cryptology
ePrint Archive, Report 2018/046, 2018. https://eprint.iacr.org/2018/
046.

[BC13] Christina Boura and Anne Canteaut. On the influence of the algebraic degree
of 𝐹 −1 on the algebraic degree of 𝐺 ∘ 𝐹 . IEEE Trans. Information Theory,
59(1):691–702, 2013.

[BCC+09] Emmanuel Bresson, Anne Canteaut, Benôıt Chevallier-Mames, Christophe
Clavier, Thomas Fuhr, Aline Gouget, Thomas Icart, Jean-Francois Misarsky,
Maria Naya-Plasencia, Pascal Paillier, Thomas Pornin, Jean-Rene Reinhard,
Celine Thuillet, and Marion Videau. Indifferentiability with distinguishers:
Why Shabal does not require ideal ciphers. Cryptology ePrint Archive, Report
2009/199, 2009. http://eprint.iacr.org/2009/199.

[BCD11] Christina Boura, Anne Canteaut, and Christophe De Cannière. Higher-order
differential properties of Keccak and Luffa. In Antoine Joux, editor, FSE 2011,
volume 6733 of LNCS, pages 252–269. Springer, Heidelberg, February 2011.

[BDD+15] Achiya Bar-On, Itai Dinur, Orr Dunkelman, Virginie Lallemand, Nathan
Keller, and Boaz Tsaban. Cryptanalysis of SP networks with partial non-linear
layers. In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015,
Part I, volume 9056 of LNCS, pages 315–342. Springer, Heidelberg, April
2015.

[BDPV07] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sponge
functions. In ECRYPT Hash Workshop, 2007. https://keccak.team/files/
SpongeFunctions.pdf.

[BDPV08] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. On
the indifferentiability of the sponge construction. In Nigel P. Smart, edi-
tor, EUROCRYPT 2008, volume 4965 of LNCS, pages 181–197. Springer,
Heidelberg, April 2008.

[BDPV09] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Keccak
sponge function family - main document. Submission to NIST, 2009. https:
//keccak.team/obsolete/Keccak-main-2.0.pdf.

[BFL11] Charles Bouillaguet, Pierre-Alain Fouque, and Gaëtan Leurent. Security
analysis of SIMD. In Alex Biryukov, Guang Gong, and Douglas R. Stinson,
editors, SAC 2010, volume 6544 of LNCS, pages 351–368. Springer, Heidelberg,
August 2011.

[BFS15] Magali Bardet, Jean-Charles Faugère, and Bruno Salvy. On the complexity of
the F5 gröbner basis algorithm. Journal of Symbolic Computation, 70:49–70,
2015.

[Bon19] Xavier Bonnetain. Collisions on Feistel-MiMC and univariate GMiMC. Cryp-
tology ePrint Archive, Report 2019/951, 2019. https://eprint.iacr.org/
2019/951.

[BSV07] Thomas Baignères, Jacques Stern, and Serge Vaudenay. Linear cryptanalysis
of non binary ciphers. In Carlisle M. Adams, Ali Miri, and Michael J.
Wiener, editors, SAC 2007, volume 4876 of LNCS, pages 184–211. Springer,
Heidelberg, August 2007.

https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2018/046
http://eprint.iacr.org/2009/199
https://keccak.team/files/SpongeFunctions.pdf
https://keccak.team/files/SpongeFunctions.pdf
https://keccak.team/obsolete/Keccak-main-2.0.pdf
https://keccak.team/obsolete/Keccak-main-2.0.pdf
https://eprint.iacr.org/2019/951
https://eprint.iacr.org/2019/951


A. Canteaut (ed.) 49

[Can16] Anne Canteaut. Lecture notes on cryptographic boolean functions. Lecture
Notes. Available at https://www.rocq.inria.fr/secret/Anne.Canteaut/
poly.pdf, 2016.

[CCF+18] Anne Canteaut, Sergiu Carpov, Caroline Fontaine, Tancrède Lepoint, Maŕıa
Naya-Plasencia, Pascal Paillier, and Renaud Sirdey. Stream ciphers: A
practical solution for efficient homomorphic-ciphertext compression. Journal
of Cryptology, 31(3):885–916, July 2018.

[DEG+18] Christoph Dobraunig, Maria Eichlseder, Lorenzo Grassi, Virginie Lallemand,
Gregor Leander, Eik List, Florian Mendel, and Christian Rechberger. Rasta:
A cipher with low ANDdepth and few ANDs per bit. In Hovav Shacham
and Alexandra Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of
LNCS, pages 662–692. Springer, Heidelberg, August 2018.

[DEM16] Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. Higher-order
cryptanalysis of LowMC. In Soonhak Kwon and Aaram Yun, editors, ICISC
15, volume 9558 of LNCS, pages 87–101. Springer, Heidelberg, November
2016.

[DLMW15] Itai Dinur, Yunwen Liu, Willi Meier, and Qingju Wang. Optimized inter-
polation attacks on LowMC. In Tetsu Iwata and Jung Hee Cheon, editors,
ASIACRYPT 2015, Part II, volume 9453 of LNCS, pages 535–560. Springer,
Heidelberg, November / December 2015.

[DR06] Joan Daemen and Vincent Rijmen. Understanding two-round differentials in
AES. In Roberto De Prisco and Moti Yung, editors, SCN 06, volume 4116 of
LNCS, pages 78–94. Springer, Heidelberg, September 2006.

[FGLM93] Jean-Charles Faugère, Patrizia Gianni, Daniel Lazard, and Teo Mora. Efficient
computation of zero-dimensional Gröbner bases by change of ordering. Journal
of Symbolic Computation, 16(4):329–344, 1993.

[FM11] Jean-Charles Faugère and Chenqi Mou. Fast algorithm for change of ordering
of zero-dimensional gröbner bases with sparse multiplication matrices. In
Proceedings of the 36th international symposium on Symbolic and algebraic
computation, pages 115–122, 2011.

[FP19] Jean-Charles Faugère and Ludovic Perret. Algebraic attacks against STARK-
Friendly Ciphers. Personal communication, 2019.

[FSK10] Niels Ferguson, Bruce Schneier, and Tadayoshi Kohno. Cryptography Engi-
neering - Design Principles and Practical Applications. Wiley, 2010.

[GGNS13] Benôıt Gérard, Vincent Grosso, Maŕıa Naya-Plasencia, and François-Xavier
Standaert. Block ciphers that are easier to mask: How far can we go? In
Guido Bertoni and Jean-Sébastien Coron, editors, CHES 2013, volume 8086
of LNCS, pages 383–399. Springer, Heidelberg, August 2013.

[GKK+19] Lorenzo Grassi, Daniel Kales, Dmitry Khovratovich, Arnab Roy, Christian
Rechberger, and Markus Schofnegger. Starkad and Poseidon: New hash
functions for zero knowledge proof systems. Cryptology ePrint Archive,
Report 2019/458, 2019. https://eprint.iacr.org/2019/458.

[GLR+19] Lorenzo Grassi, Reinhard Lüftenegger, Christian Rechberger, Dragos Rotaru,
and Markus Schofnegger. On a generalization of substitution-permutation
networks: The HADES design strategy. Cryptology ePrint Archive, Report
2019/1107, 2019. https://eprint.iacr.org/2019/1107.

https://www.rocq.inria.fr/secret/Anne.Canteaut/poly.pdf
https://www.rocq.inria.fr/secret/Anne.Canteaut/poly.pdf
https://eprint.iacr.org/2019/458
https://eprint.iacr.org/2019/1107


50 Report on the security of STARK-friendly hash functions

[HRS99] Tor Helleseth, Chunming Rong, and Daniel Sandberg. New families of
almost perfect nonlinear power mappings. IEEE Trans. Information Theory,
45(2):475–485, 1999.

[KR07] Lars R. Knudsen and Vincent Rijmen. Known-key distinguishers for some
block ciphers. In Kaoru Kurosawa, editor, ASIACRYPT 2007, volume 4833
of LNCS, pages 315–324. Springer, Heidelberg, December 2007.

[KU08] Kiran S. Kedlaya and Christopher Umans. Fast modular composition in any
characteristic. In 49th FOCS, pages 146–155. IEEE Computer Society Press,
October 2008.

[KW02] Lars R. Knudsen and David Wagner. Integral cryptanalysis. In Joan Daemen
and Vincent Rijmen, editors, FSE 2002, volume 2365 of LNCS, pages 112–127.
Springer, Heidelberg, February 2002.

[Lai94] Xuejia Lai. Higher order derivatives and differential cryptanalysis. In Proc.
”Symposium on Communication, Coding and Cryptography”, in honor of J.
L. Massey on the occasion of his 60’th birthday. Kluwer Academic Publishers,
1994.

[Mac02] Francis Sowerby Macaulay. Some formulae in elimination. Proceedings of the
London Mathematical Society, 1(1):3–27, 1902.

[MJSC16] Pierrick Méaux, Anthony Journault, François-Xavier Standaert, and Claude
Carlet. Towards stream ciphers for efficient FHE with low-noise ciphertexts.
In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part I, volume 9665 of LNCS, pages 311–343. Springer, Heidelberg, May
2016.

[MWGP11] Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. Differential and lin-
ear cryptanalysis using mixed-integer linear programming. In Chuankun Wu,
Moti Yung, and Dongdai Lin, editors, Information Security and Cryptology -
Inscrypt 2011, volume 7537 of LNCS, pages 57–76. Springer, 2011.

[Nyb94] Kaisa Nyberg. Differentially uniform mappings for cryptography. In Tor
Helleseth, editor, EUROCRYPT’93, volume 765 of LNCS, pages 55–64.
Springer, Heidelberg, May 1994.

[RST18] Christian Rechberger, Hadi Soleimany, and Tyge Tiessen. Cryptanalysis
of low-data instances of full LowMCv2. IACR Trans. Symm. Cryptol.,
2018(3):163–181, 2018.

[SDMO12] Mahdi Sajadieh, Mohammad Dakhilalian, Hamid Mala, and Behnaz Omoomi.
On construction of involutory MDS matrices from Vandermonde matrices in
GF(2𝑞). Designs, Codes and Cryptography, 64(3):287–308, Sep 2012.

[SWMSP17] Ana Sălăgean, R. Winter, Matei Mandache-Sălăgean, and Raphael C.-W.
Phan. Higher order differentiation over finite fields with applications to
generalising the cube attack. Designs, Codes and Cryptography, 84(3):425–
449, 2017.

[Udo19] Alexei Udovenko. Personal communication, November 2019.

[YMT97] AM Youssef, S Mister, and SE Tavares. On the design of linear transformations
for substitution permutation encryption networks. In Workshop on Selected
Areas of Cryptography (SAC96), pages 40–48, 1997.



A. Canteaut (ed.) 51

A Weak Cauchy matrices

The linear layers of Starkad and Poseidon are chosen such that 𝐿𝑖,𝑗 = 1/(𝑥𝑖 + 𝑥𝑗 + 𝑎)
where 𝑥1, . . . , 𝑥𝑡 are distinct elements of F𝑞 [GKK+19]. The following result shows that,
for Starkad instances with 𝑡 a power of two, there exist weak choices of 𝑥1, . . . , 𝑥𝑡 that
enable the preimage attack from Section 5.3.

Theorem 1. Let 𝐺 = {𝑥1, . . . , 𝑥𝑡} be an additive subgroup of F2𝑛 of order 𝑡 and let
𝑎 ∈ F2𝑛 ∖𝐺. For the Cauchy matrix 𝐿 ∈ F𝑡×𝑡

2𝑛 defined by 𝐿𝑖,𝑗 = 1/(𝑥𝑖 + 𝑥𝑗 + 𝑎), it holds
that 𝐿2 = 𝑏2𝐼 with 𝑏 =

∑︀𝑡
𝑖=1 1/(𝑥𝑖 + 𝑎).

Proof. Observe that

(𝐿2)𝑖,𝑗 =
𝑡∑︁

𝑘=1

1
𝑥𝑖 + 𝑥𝑘 + 𝑎

× 1
𝑥𝑗 + 𝑥𝑘 + 𝑎

=
∑︁

𝑥∈𝑎+𝐺

1
𝑥(𝑥 + 𝑥𝑖 + 𝑥𝑗) .

For 𝑖 = 𝑗, the result is clear. It suffices to prove that (𝐿2)𝑖,𝑗 = 0 for 𝑖 ̸= 𝑗. Since 𝑥𝑖 ̸= 𝑥𝑗

for 𝑖 ̸= 𝑗, we have 𝑔 = 𝑥𝑖 + 𝑥𝑗 ∈ 𝐺 ∖ {0}. Finally, it holds that

(𝐿2)𝑖,𝑗 =
∑︁

𝑥∈𝑎+𝐺

1
𝑥(𝑥 + 𝑔) = 1

𝑔

∑︁
𝑥∈𝑎+𝐺

(︂
1
𝑥

+ 1
𝑥 + 𝑔

)︂
= 0.

A special case of Theorem 1 is discussed by Youssef et al. [YMT97, S3.2]. For an
extension F2(𝜁) ⊃ F2 of degree 𝑛, they show that the choice 𝑥𝑖 =

∑︀log2 𝑡
𝑗=1 i𝑗 𝜁𝑗−1 with

i1, . . . , ilog2 𝑡 the binary digits of 𝑖 results in a Cauchy matrix 𝐿 such that 𝐿2 = 𝑏2𝐼 for
some 𝑏 ∈ F2(𝜁).


	Introduction
	The SFH Contenders
	Hash functions derived from the sponge construction
	Candidates for the inner permutations
	Round constants and MDS matrices
	Performance

	Security Evaluation of Hash Functions: Methodology
	STARK-friendly hash challenges
	Attacks on weakened variants
	Distinguishers for the inner permutation

	GMiMC
	Description
	Integral distinguishers on the full GMiMC
	Impossible differential attacks
	A Differential Distinguisher
	Algebraically controlled differential attacks
	Reduced-round collision attacks
	Summary

	HadesMiMC (Starkad and Poseidon)
	Description
	Integral distinguishers
	Finding preimages by linearization of the partial rounds
	Remarks on algebraic distinguisher related to the CICO problem
	Summary

	Marvellous (Vision and Rescue)
	Description
	Degree of the permutation
	Algebraic distinguisher on Rescue related to the CICO problem
	Summary

	Conclusions
	Weak Cauchy matrices

